Interaction between Copper Oxide Nanoparticles and Amino Acids: Influence on the Antibacterial Activity

Elena Badetti ^{1,*}, Loris Calgaro ¹, Laura Falchi ¹, Alessandro Bonetto ¹, Cinzia Bettiol ¹, Benedetta Leonetti ^{2,3}, Emmanuele Ambrosi ^{2,3}, Elisabetta Zendri ¹ and Antonio Marcomini ^{1,*}

- ¹ DAIS—Department of Environmental Sciences, Informatics and Statistics, University Ca' Foscari of Venice, Via Torino 155, 30172 Venice Mestre, Italy; loris.calgaro@unive.it (L.C.); laura.falchi@unive.it (L.F.); alessandro.bonetto@unive.it (A.B.); bettiol@unive.it (C.B.); elizen@unive.it (E.Z.)
- ² DMSN—Department of Molecular Sciences and Nanosystems, University Ca' Foscari of Venice, Via Torino 155/b, 30172 Venice Mestre, Italy; leonetti393@gmail.com (B.L.); emmanuele.kizito@gmail.com (E.A.)
- ³ ECLT Lab—European Centre for Living Technology, University Ca' Foscari of Venice, Via Torino 155/b, 30172 Venice Mestre, Italy
- * Correspondence: elena.badetti@unive.it (E.B.); marcom@unive.it (A.M.)

ATR-FTIR

Figure S1. ATR-FTIR spectra of Val, Cu-Val complex and CuO NPs treated with Val.

Figure S2. ATR-FTIR spectra of Arg, Cu-Arg complex and CuO NPs treated with Arg.

Figure S3. ATR-FTIR spectra of Cys, Cu-Cys complex and CuO NPs treated with Cys.

Figure S4. ATR-FTIR spectra of Glu, Cu-Glu complex and CuO NPs treated with Glu.

Figure S5. ATR-FTIR spectra of Asp, Cu-Asp complex and CuO NPs treated with Asp.

Figure S6. ATR-FTIR spectra of Leu, Cu-Leu complex and CuO NPs treated with Leu.

Figure S7. ATR-FTIR spectra of Phe, Cu-Phe complex and CuO NPs treated with Phe.

Figure S8. ATR-FTIR spectra of Tyr, Cu-Tyr complex and CuO NPs treated with Tyr.

Figure S9. ATR-FTIR spectra of CuO NPs/Cu-Cys complex physical mixture.

Figure S10. ATR-FTIR spectra of CuO NPs/Cu-Glu complex physical mixture.

Assignment ¹	Leu	CuO NPs+Leu	Glu	CuO NPs+Glu	Asp	CuO NPs+Asp	Tyr	CuO NPs+Tyr	Phe	CuO NPs+Phe	Cys	CuO NPs+Cys
v CH phenyl-							3202	3307 w	3068 m	3332 m		
ν OH (H ₂ O)		3315, 3242 s	3044 w	3312 s		3261					3165 s	
ν NH2; (ν CH												
phenyl- for Tyr and Phe)	~3000 b		3012 b	3155 b	3017 b	3128 b	3000 b	3157 b	2960 b	3032 b,w		
ν CH ₂ , CH ₃ sharp); ν N–H ² (broad)	2956, 2868 s	2958 m, 2925 m, 2870 m	2914 b	2928,2910 m	2946,2855 s	2977,2931 m	2922 w	2995,2931 m	2953 b w	2938 b w	2990 s	3226, 3138
v SH											2551 s	
Overtones, combination bands	2617 w		2736, 2628 w		2727, 2652, 2502 w						2058 b	
ν C=O			1666 w		1686 m				1672		1649 vw	1653
$\delta_{Asym} N\text{-}H$	1606 w	1614 vs	1637 m	1612 vs	1641 m	1628 vs	1606 m	1601m	1622 w	1616 s	1614 w	1614 s
ν CC, δ CH; v _{asym} as COO ⁻ carboxylate	1574 s	1566 w	1614 b	1566vs	1595 m	1589 vs	1576-1559 vs	1567 vs	1558 s	1561 w	1568 s	1574 m b
δ _{sym} N–H; (ν CC and δ CH phenyl for Tyr and Phe)	1512 s	1473 m	1504 s		1500 s	1507 s	1510 s	1493 s1496 m, sh	1512 s	1473 m	1524 s	
δ CH; v _{sym} COO-	1454 m, 1406 s	1456 m, b	1435 b, 1412 m	1407-1390 vs, b	1417 s	1406 vs	1456,1418 m	1460-1402 m	1408 s	1456 m, sharp	1421 s,	

Table S1. Infrared band assignment (cm⁻¹) of free amino acids (Leu, Glu, Asp, Tyr, Phe, Cys) and CuO NPs treated with Leu, Glu, Asp, Tyr, Phe and Cys, according to the literature [1–6].

Assignment 1	Leu	CuO NPs+Leu	Glu	CuO NPs+Glu	Asp	CuO NPs+Asp	Tyr	CuO NPs+Tyr	Phe	CuO NPs+Phe	Cys	CuO NPs+Cys
δ CH2, CH3; δHCN	1385 m	1399 m	1348 s	1354 s	1356m	1367 m	1362 s	1351 m	1336 m	1383 s	1389 s	1385 s
δ COH; (δ CH phenyl for Tyr and Phe)	1342 m,w	1335 m	1308 s	1327 s	1288 s	1300 s	1328 s	1328 w	1304 s	1323 s	1344 s	1342 m
γ CH2; δ NH; ν CO	1238 m, 1294 s	1246 w	1255	1265 s	1244 m	1228 s	1242 s	1232 s	1223 s	1232 m	1296s, 1265w	1300w, 1277, 1250 vw
δ CH ₃			1211 m	1205 w			1213 w	1211 w				
ν (CC)R; δ (HNC)	1182 m	1194 w	1149 w	1132m	1147 w	1159 m	1174 m	1172	1155 s	1160 w		1174 w
ν CO, δΟΗ											1196 m	
δ CH; NH ₃ +	1132 m	1136 s	1122 m	1105	1119 m	1134 w	1153 m	1156 m	1129 w	1137 m	1140 m	1132 m
δ (HCC)R	1084 w	1106, 1091	1074 w	1063 w	1080 vw	1095 m	1098 m	1093 m	1074 m	1101 s	1101 w	
ν (CC)R; ν (N–C)	1030 vw		1047 s	1026 w	1036 m	1032 m	1041 m	1078 m	1024 m	1074 m	1063 s	1078 w
δSH											995 m	993 vw
ν (CC)	1001m	1007+986 m	943 s	951 m	985 m	941vw	983 w	995 m	1001 m	1014 m	943 s	
γ (HCCH)R	943m		908 m		933 w	904 w	895	890m	912	924		
ν COO-;	847 m	852m	862	876m	897 m	864 w	839 s	845w	849 s	846 w	866 s	858 m
δ ΗΝΗ	831 w	833 m	802 s	823	870		813				822, 804 w	
γ CC	768m	791 m	756 w		746 s	833 w	792 m	769 w	773s	785 m	770 vw	789 w
γ COO- scissor; δ CH out of plane def		767 m	698 s	731 s		687 m	738	747 w	744 vs	754 s	752 w	752 vw

Assignment 1	Leu	CuO NPs+Leu	Glu	CuO NPs+Glu	Asp	CuO NPs+Asp	Tyr	CuO NPs+Tyr	Phe	CuO NPs+Phe	Cys	CuO NPs+Cys
Out of plane												
phenyl def							710	704	607	608 a		
for Tyr and							/12 W	704 W	697 VS	696 S		
Phe												
v CS											690 m,s	683 vw
ν CS, γ											626 0	
COO-											030 S	
$\gamma \text{ COO}$ -; NH ₂								691				
rock	667s	669-665 m	669 w	669 w	646 s	672 w	669 w	001 W001	674 m			
(complexes)								111				
In plane							574	60 2 m	604 m	E92		
phenyl def							374 VS	602 III	604 III	362 W		
γ COO-; γ	E22a	567	5536 w,	191 m	E04 EE0	590	E22 mg	E29 m	E01m	EEE o	E26 a	
COO-N-H	552S	501 m 484 m 594, 550	560	525 VS	558 III	521IN	555 S	556 S				
v CuO		478 w, b		450 m, b		526 s, b		485 m		467vw		499 s

b=broad; s=strong, m=medium, w=week; sh=sharp; v=very

DSC-TGA

Figure S11. DSC and TGA spectra of of pristine CuO NPs.

Figure S12. DSC and TGA spectra of CuO NPs treated with Arg.

Figure S13. DSC and TGA spectra of CuO NPs treated with Val.

Figure S14. DSC and TGA spectra of CuO NPs treated with Cys.

Figure S15. DSC and TGA spectra of CuO NPs treated with Leu.

Figure S16. DSC and TGA spectra of CuO NPs treated with Glu.

Figure S17. DSC and TGA spectra of CuO NPs treated with Asp.

Figure S18. DSC and TGA spectra of CuO NPs treated with Phe.

Figure S19. DSC and TGA spectra of CuO NPs treated with Tyr.

Compound	Temperature range (°C)	TG weight loss/gain (%)	DSC peaks (°C)	Assignment	Residual mass at 600°C	
CuO NPs	30–600	-2.1	-	No reaction occurs	97,9%	
CuO NPs+Arg	100-450	-0.7	212, 366 exo, very weak	Combustion of residues remained after cleaning	99.3%	
CuO NPs+Val	30–260	-2.1	200 exo, weak 515 exo	Double step combustion of residues remained	95.9%	
	410–560	-0.6	weak	after cleaning		
	30-140	-4.4	80, endo	Broad DSC peak centred at 80 °C due to humidity loss 1 st step of		
CuO NPs+Cys	140-200	-10.7	194 exo	decomposition	82.8%	
	200–270	-15.9	245 (shoulder) + 270 exo	2 nd step of decomposition		
	270–360	+12.4	310 exo	Oxidation		
	200–270	-56.9	248+272 exo	Double step of decomposition	20.2%	
CuO NI S+Leu	270-300	+2.16	310 exo (weak)	Oxidation	07.270	
	80–165	-12.9	142 endo	Loss of crystal water		
CuO NPs+Glu	200–270	-27.4	214+229 exo	1 st decomposition in a double step reaction	40.4%	
	400–550	-9.8	438 exo	Combustion of the organic residue		
	30-110	-9.9%	91 endo	Non-bonded water		
	110–160	-5.9%	138 endo	Loss of crystal water		
CuO NPs+Asp	170-270	-39.6	209+225 exo	Double step decomposition	38.5%	
			258 exo	Phase transition		
	270–400	-5.9	342	Decomposition		
	200-270	-40.3	250 exo	Decomposition		
CuO NPs+Phe	400–550	-12.6	425+490 exo	Double step decomposition	33.7%	
	200–270	-24.2	259 exo	Decomposition		
CuO NPs+Tyr	270–400	-10.3	334 exo	Decomposition	39.2%	
	400-550	-27.3	470 exo	Decomposition		

Table S2. TG and DSC analysis results.

Figure S20. SEM images of (a) pristine CuO NPs; (b) CuO NPs treated with Val; (c) CuO NPs treated with Cys; (d) CuO NPs treated with Tyr.

References:

- 1. Barth, A. The infrared absorption of amino acid side chains. *Prog. Biophys. Mol. Biol.* 2000, 74, 141–173.
- 2. Dokken, K.M.; Parsons, J.G.; McClure, J.; Gardea-Torresdey, J.L. Synthesis and structural analysis of copper(II) cysteine complexes. *Inorganica Chim. Acta* **2009**, *362*, 395–401.
- Fitts, J.P.; Persson, P.; Brown, G.E.; Parks, G.A. Structure and Bonding of Cu(II)– Glutamate Complexes at the γ-Al2O3–Water Interface. *J. Colloid Interface Sci.* 1999, 220, 133–147.
- 4. Marcu, A.; Stanila, A.; Rusu, D.; Rusu, M.; Cozar, O.; David, L. Spectroscopic studies of copper (II) complexes with some amino acids. *J. Optoelectron. Adv. Mater.* **2007**, *9*, 741–746.
- 5. Stanila, A.; Marcu, A.; Rusu, D.; Rusu, M.; David, L. Spectroscopic studies of some copper(II) complexes with amino acids. *J. Mol. Struct.* **2007**, *834–836*, 364–368.
- 6. Silverstein, R.M.; Bassler, C.G.; Morrill, T.C. Spectrometric identification of organic compounds. **1981**, 128–129.