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Abstract: Bimetallic oxides have been considered as potential candidates for supercapacitors
due to their relatively high electric conductivity, abundant redox reactions and cheapness.
However, nanoparticle aggregation and huge volume variation during charging-discharging
procedures make it hard for them to be applied widely. In this work, one-dimensional (1D)
MnFe2O4@C nanowires were in-situ synthesized via a simply modified micro-emulsion technique,
followed by thermal treatment. The novel 1D and core-shell architecture, and in-situ carbon coating
promote its electric conductivity and porous feature. Due to these advantages, the MnFe2O4@C
electrode exhibits a high specific capacitance of 824 F·g−1 at 0.1 A·g−1 and remains 476 F·g−1 at
5 A·g−1. After 10,000 cycles, the capacitance retention of the MnFe2O4@C electrode is up to 93.9%,
suggesting its excellent long-term cycling stability. After assembling with activated carbon (AC) to
form a MnFe2O4@C//AC device, the energy density of this MnFe2O4@C//AC device is 27 W·h·kg−1 at
a power density of 290 W·kg−1, and remains at a 10 W·h·kg−1 energy density at a high power density
of 9300 W·kg−1.

Keywords: in-situ carbon coating; MnFe2O4 nanowire; supercapacitor; long-term stability

1. Introduction

Electrochemical supercapacitors have been in the research spotlight owing to their intriguing
characteristics, such as high power density, wide temperature ranges, long cycling stability and
safety [1–4]. Despitethe aforementioned prominent advantages, the large-scale utilization for
supercapacitors is restricted by their low energy density [5–7]. Due to the close relationship between
energy density with the specific capacitance and working voltage, designing a composite electrode
possessing high specific capacitance and fabricating asymmetric supercapacitors (ASC) with broad
working voltage is deemed to be the most useful way [8–12].

One of the effective strategies to improve electrochemical performances of the ASC is to synthesize
peculiar electrode materials. Among the various electrode materials, bimetallic oxide materials,
especially MnFe2O4, have aroused attention in the past few decades on account of their cheapness,
environmental amity, and plentiful oxidation valences [13–16]. Thus, MnFe2O4 materials with
plentiful morphologies and structures have been prepared and used as supercapacitor electrodes.
But the electrochemical performances of these MnFe2O4 materials were barely satisfactory due
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to easy aggregation and volume expansion during the charging-discharging process, and low
electrical conductivity. Up to now, many efforts have been devoted to fabricating carbon-metal
oxide composites, which can improve the electrical conductivities of the bimetallic oxides and enhance
the rate properties of electrodes at the same time. MnFe2O4@C (such as graphene, rGO and carbon black,
etc.) nanocomposites have been widely studied [17–20]. Although the electrochemical performances of
MnFe2O4@C composites have been effectively enhanced through tuning the morphology and porous
structure, the preparation procedures usually experience some rough or tedious steps, with high
energy consumption and toxic or unfriendly effects to the environment. How to prepare MnFe2O4@C
composites with uniform carbon coating via a facile, green and cheap route is a matter of urgency.

Herein, MnFe2O4@C nanowires have been in-situ synthesized by a micro-emulsion approach.
The particular architecture, nanowire in whole and core-shell in part, are poriferous but extremely
sturdy, promoting electron and ion transportation for redox reactions. The uniform carbon coating not
only improves the electric conductivity, but also protects the core-shell nanoparticles from aggregation
during repeated charging-discharging processes. Profiting from these superiorities, the MnFe2O4@C
composites deliver a specific capacitance of 824 F·g−1 at 0.1 A·g−1 and maintain 476 F·g−1 at 5 A·g−1,
indicating 57.8% capacitance retention. Moreover, the MnFe2O4@C electrode exhibits a prominent
cycling stability of 93.9% after 10,000 cycles at 1 A·g−1.

2. Materials and Methods

The micro-emulsion approach was modified in this work to prepare MnFe2O4@C composites
(Scheme 1) with a modified procedure [21–23]. More specifically, 0.5 mmol cetyltrimethyl ammonium
bromide (CTAB) was put into the mixed solution of pentanol and cyclohexane (volume ratio of 1:10),
and stirred for 2 h to generate a homogeneous micro-emulsion. The above micro-emulsion should
be in duplicate, named as E1 and E2. Subsequently, 2 M H2C2O4 (5 mL) solution was continuously
dropped to the E1, designated as E1-1. And 0.1 M MnSO4 and 0.2 M (NH4)2Fe(SO4)2 solution was
added into the E2 to form E2-1. Moreover, The E1-1 solution was mixed with E2-1 under persistent
stirring for 2 h. Then the mixed micro-emulsion was aged for another 2 h. The sediment (MnFe-based
oxalate) was collected by centrifugation, lavaged with pure water and ethanol a few times and dried
in an oven overnight. The dried sediment was calcinated at 350 ◦C for 2 h under Ar atmosphere to
receive the endproduct.
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Scheme 1. Schematic illustration of the prepared MnFe2O4@C composite.

The thermodynamic property of the sediment was measured by the TG (SETAR-AM, SENSYS EVO,
TA Instruments, Newcastle, DE, America). The measurement conditions of the TG were as follows:
the heating rate, the test temperature range and the atmosphere are 10 ◦C·min−1, 20 to 800 ◦C and
Ar with 99.99% purity. The chemical constitution, valances and morphology were characterized by
X-ray diffraction (XRD, Rigaku D/Max-2500, Cu Kα radiation, Tokyo, Japan), X-ray photoelectron
spectroscopy (XPS, Escalab250Xi, Thermo Scienticfic, England), Raman spectroscopy (532 nm laser
excitation wavelength, Horiba Evolution, Horiba JobinYvon S.A.S., Paris, France) and field-emission
scanning electron microscopy (FESEM, FEI Verios 460 L, 5.00 kV accelerating voltage, Eindhoven,
The Netherlands), and field-emission transition electron microscope (FETEM, FEI, Technai G2 Spirit
TWIN, 120 kV accelerating voltage, Eindhoven, The Netherlands).
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The detailed process for the fabrication of the working electrode was as follows: 1) 24 mg active
materials MnFe2O4@C, 3 mg acetylene black (AB) and 3 mg polyvinylidene fluoride (PVDF) were
mixed in a mortar. Then, 250 µL N-methyl-2-pyrrolidinone (NMP) and 600 µL ethanol were added
into the above mortar. The homogenous slurry was formed after manual-milling with the pestle
for 30 min. 2) 10 µL above homogenous slurry was uniformly dropwise added into carbon foam
(1 cm × 1 cm) with a dropper. 3) The above carbon foam was dried in an oven at 80 ◦C for 12 h.
In our working, the mass of the active materials MnFe2O4@C is about 1.5 mg. The electrochemical
tests were implemented in a three-electrode system. The reference, counter and working electrodes
were saturated calomel electrode (SCE), Pt and MnFe2O4@C electrodes, respectively. And 2 M KOH
aqueous solution was the electrolyte. For the two-electrode measurement, activated carbon (AC)
was used as the cathode. AC was fabricated into an electrode according to the above fabrication
procedure of the MnFe2O4@C electrode without adding AB. The electrolyte was 2 M KOH aqueous
solution and the separator membrane was glass fiber. The MnFe2O4@C electrode and AC electrode
were applied to assemble two-electrode cells in coin-cells. Cyclic voltammetry (CV) and galvanostatic
charge-discharge (GCD) of the MnFe2O4@C electrode and the MnFe2O4@C//AC device were conducted
on the electrochemical workstation (CHI760E, Shanghai Chenhua Instrument co., LTD, China) and
LAND (2001A, Wuhan LAND Electronic co., LTD, China), respectively.

The specific capacitance of electrode or device are calculated by integrating the CV curves
according to the following Equation (1):

C =
1

mv(Vf −Vi)

∫ Vf

Vi

I(V)dV (1)

where C (F·g−1) is the specific capacitance, m (g) is the mass of the active materials (MnFe2O4@C) of
the electrode or the total mass of the device, v (V·s−1) is the scan rate, Vi and Vf (V) are the initial and
final potentials in the CV curves, respectively, and I (A) is the corresponding current.

The specific capacitance of the electrode is calculated from GCD plots according to the following
Equation (2):

C =
I4 t

m4V
(2)

where C (F·g−1) is the specific capacitance, 4t (s) is the discharging time, m (g) is the mass of the
electrode or the total mass of the device, and 4V (V) is the working voltage window.

3. Results and Discussion

The thermodynamic property of the precursor MnFe-based oxalate is depicted in Figure 1.
Obviously, there was a sharp argavic peak with the increase of the heating temperature. It occurred from
275 ◦C to 325 ◦C, corresponding to the decomposition of the MnFe-based oxalate. On account of the TG
results, the calcinated condition was maintained at 350 ◦C for 2 h to ensure its complete decomposition.
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The chemical constitution and valances of the MnFe2O4@C products are displayed in Figure 2.
All the diffraction peaks, except for the broad peak at around 20◦, belong to the cubic MnFe2O4 (JCPDS
No. 10-0319) (Figure 2a). The broad peak confirms the presence of the amorphous carbon [24,25].
Moreover, the degree of graphitization for carbon in MnFe2O4@C composites has been further verified
by the Raman spectrum (Figure 2b). The obvious peak at 624 cm−1 can be assigned to the characteristic
peak of MnFe2O4, further confirming its successful preparation [26,27]. The featured peaks of D- and
G-bands appear at 1380 and 1590 cm−1, respectively, standing for amorphous and graphitized carbon.
And the ID/IG ratio after calculation is about 0.81, which is far away from the fully graphitic level
(0.09), suggesting its disorder characteristic and high electric conductivity [28–30]. The Raman result is
accordant with the XRD analysis. The XPS spectrum of Mn 2p in Figure 2c presents two main peaks at
652.3 and 640.4 eV, ascribing to Mn 2p1/2 and Mn 2p3/2, respectively. The energy differences of these
two peaks is about 11.9 eV, which is on the verge of the numerical value for Mn3O4, indicating the
coexistence of Mn2+ and Mn3+ ions [28,29]. The remaining peak at 643.6 eV is the Mn 2p satellite peak.
Similarly, the XPS spectrum of Fe 2p can be fitted into two peaks at 723.8 and 710.4 eV, rooting in Fe2+

and Fe3+ ions, respectively (Figure 2d). The satellite peak of the Fe 2p appears at 718.6 eV [28,29].
There are three obvious fitted peaks at 528.6, 530.0 and 532.2 eV in Figure 2e, which correspond to the
metallic oxides and sorbed H2O [30,31]. Similarly, the C 1s spectra for the MnFe2O4@C composites can
be fitted to three peaks, corresponding to C-C, C-O and C=O [30,31].
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Figure 2. XRD pattern (a), Raman spectrum (b), XPS spectra for Mn 2p (c), Fe 2p (d), O 1s (e) and C 1s
(f) of the MnFe2O4@C composite.

Figure 3 reveals the SEM and TEM images of the MnFe-based oxalate and MnFe2O4@C composite.
As designed, the structure of the MnFe-based oxalate obtained via a modified micro-emulsion technique
is 1D nanowire (Figure 3a). And the diameter and length of the MnFe-based oxalate nanowire are about
200 nm and 10 µm, respectively. In addition, the surfaces of these nanowires are smooth (Figure 3b).
After calcination, the MnFe2O4@C composites preserve the whole structure of nanowire, while they
present a rough surface compared with the metal oxalate (Figure 3c). The MnFe2O4@C composites
are composed of innumerable nanoparticles, which is demonstrated by the TEM results (Figure 3d).
The size distribution of the MnFe2O4@C composites is displayed in the inset of Figure 3c. In the
high-resolution TEM image (Figure 3e), the core-shell structures were constructed with 15 nm MnFe2O4

core and 3 nm carbon coating. The selected area electron diffraction (SAED) pattern of MnFe2O4@C
composites has been added in Figure 3f and presents three diffraction rings, which correspond to
(111), (220) and (311) planes, and illustrates the polycrystalline structure. This original nanostructure
is conducive to transferring electronics fast, infiltrating into the active materials and tolerating the
volume change during the charging-discharging processes.
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Figure 3. SEM (a) and TEM (b) image of the MnFe-based oxalate, SEM image (c), TEM images (d,e)
and SAED pattern (f) of the MnFe2O4@C composite.

CV curves of the MnFe2O4@C electrode at the scan rates from 10 to 100 mV·s−1 are displayed
in Figure 4a. The whole shape of the various CV curves is near-rectangle, which is close to the ideal
pseudocapacitor with rectangle CV curve. The CV curves are nearly symmetric, demonstrating its
high reversibility of the electrochemical reaction. The near-rectangle shape has not been deformed at
a high scan rate, suggesting its excellent kinetic performances. Moreover, by increasing the scan rates,
the response current density enhances significantly, which could be because the ions in electrolytes
infiltrate into the active materials shorter at a high scan rate. Note that the contribution of the carbon
foam to the specific capacitance can be ignored [32]. The calculated specific capacitances with scan rates
are 867, 743, 612, 486 and 314 F·g−1 (Figure 4b), which is consistent with the previous literatures [33,34].
The decrease in capacitance of the MnFe2O4@C electrode with the increase of scan rate may be due to
the decreased utilization of the active material MnFe2O4@C. Specifically, the smaller fraction of the OH−

ions in electrolytes can intercalate into the structure of the MnFe2O4 at a higher scan rate than that of
a low scan rate, which results in the decreased utilization of the active materials. In addition, GCD plots
of the MnFe2O4@C electrode at various current densities are exhibited in Figure 4c. The shape of
the GCD plot at any current density is triangular. The GCD plots are symmetric, hinting its good
reversibility and agreement with the CV results. Similarly, the specific capacitances of the MnFe2O4@C
electrode decrease with enhanced current density (Figure 4d). The maximum specific capacitance
of the MnFe2O4@C electrode at 0.01 A·g−1 is 867 F·g−1. The specific capacitances at different current
densities are 824, 746, 625, 508 and 476 F·g−1 from 0.1 to 5 A·g−1, about 57.8% capacitance retention.
Long-term circulation is an essential criterion for evaluating supercapacitors. The cycling performance
of the MnFe2O4@C electrode at 1 A·g−1 is shown in Figure 5. Apparently, only 6.1% specific capacitance
loss is noticed after repeating charging-discharging for 10,000 cycles, illustrating its distinguished
reversibility and stability.
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Figure 5. Long-term cycling performance of the MnFe2O4@C electrode.

For practical application, the two-electrode system, MnFe2O4@C//AC device, has been assembled
in our work. Figure 6a depicts the potential window of the MnFe2O4@C and AC electrodes at 20 mV·s−1

scan rate, respectively. So the theoretical working voltage window of the MnFe2O4@C//AC device
is 2 V, according to the working voltage window of negative and positive electrodes. It is noted
that the electrolyte of the MnFe2O4@C//AC device is 2 M KOH aqueous solution. To estimate the
optimal operating potential window, the CV curves of the MnFe2O4@C//AC device operated under
different potential windows at 10 mV·s−1 are shown in Figure 6b. It can be seen that when the
voltage is higher than 1.7 V, the curve shows a pronounced polarization, corresponding to the oxygen
evolution reaction in the electrolyte. So the operation window of 1.6 V is determined to be the suitable
operating voltage. The CV curves of the MnFe2O4@C//AC device at various scan rates are depicted
in Figure 7a. The shape of the CV curves has no obvious distortion and the corresponding current
density increases with the enhanced scan rate, indicating its excellent rate performance. The GCD tests
of the MnFe2O4@C//AC device at different current densities are performed (Figure 7b). The shapes of
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the GCD plots are almost the same, except for different discharging times. The cycling performance of
the MnFe2O4@C//AC device at 1 A·g−1 is investigated and the results are depicted in Figure 7c. It can
be seen that there is a slight decrease of the specific capacitance, about 6.9% capacitance decrement
after 5000 cycles, confirming the outstanding long-term cycling performance of the MnFe2O4@C//AC
device. Furthermore, the Ragone plot of the assembled MnFe2O4@C//AC deviceis obtained from
calculating the results of GCD plots (Figure 7d). The MnFe2O4@C//AC device delivers a high energy
density of 27 W·h·kg−1 at a power density of 290 W·kg−1, and remains at a 10 W·h·kg−1 energy density
at a high power density of 9300 W·kg−1, which is higher than the previous reports [15,18,20,33,35].
The outstanding high-rate performance and cycling stability could be due to the following two aspects:
(1) the unique porous, core-shell architecture and carbon coating’s mechanical and electrochemical
stability, which contributes to fast electron and ion transportation and long-time charge-discharge
measurements; (2) the uncontrolled space between core-shell nanoparticles or between the whole
nanowires cantolerate the volume change from the fast and long-term electrochemical reactions.
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4. Conclusions

We designed and fabricated novel MnFe2O4@C nanowires via a simple combination of the
modified micro-emulsion technique and thermal treatment. The obtained MnFe2O4@C nanowires
display about 200 nm diameter and 10 µm length. The in-situ carbon coating has been achieved,
which enhances the whole electronic conductivity effectively and protects the MnFe2O4 nanoparticles
from aggregation with charging-discharging procedures. And the experimental results demonstrate
that the MnFe2O4@C electrode exhibits high specific capacitance, distinguished rate performance and
stable cycling properties, which further verifies its candidacy as a supercapacitor electrode material.
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