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Abstract: In this study, a bimetallic oxide catalyst of cobalt-manganese (CoMn2O4) was synthesized
using the sol-gel method, and it was then characterized using a variety of techniques such as
scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD)
spectroscopy, X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption–desorption isotherms.
The obtained novel catalyst, i.e., CoMn2O4, was then used as an activator of peroxymonosulfate
(PMS) for the catalytic degradation of a commonly-used UV filter, 2-phenylbenzimidazole-5-sulfonic
acid (PBSA) in water. The effects of various factors (e.g., catalyst dosage, PMS concentration,
reaction temperature, and pH) in the process were also evaluated. Chemical scavengers and electron
paramagnetic resonance (EPR) tests showed that the •OH and SO4

•− were the main reactive oxygen
species. Furthermore, this study showed that CoMn2O4 is a promising catalyst for activating PMS to
degrade the UV filters.

Keywords: CoMn2O4; catalytic degradation; peroxymonosulfate; UV filters; 2-phenylbenzimidazole-
5-sulfonic acid (PBSA)

1. Introduction

In recent years, UV filters have been increasingly used in personal care products (PCPs), such as
sunscreen creams, lipsticks, shampoos, and hair gels. Given their dramatically increasing daily use,
UV filters are continuously being discharged into the aquatic environment, and have become a class of
emerging contaminants (ECs) and also formed “false persistent” pollution [1,2]. A large number of
studies have shown that some organic UV filters can mimic the effects of various hormones in living
organisms, thereby interfering with the normal endocrine functions of animals and humans, resulting
in potentially serious health threats [3–8]. Unfortunately, UV filters are relatively stable in nature and
are considered difficult to be biodegraded, making it difficult for municipal wastewater treatment
plants to completely remove them during treatment [9,10]. In view of the yearly increases in production
and emission of these ECs, the environmental pollution caused by UV filters have become a research
hotspot in the environmental field worldwide. Therefore, it is necessary to apply some cost-effective
techniques such as advanced oxidation processes (AOPs), to ensure the efficient elimination of such
ECs from the water environment [11].
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Over the past few decades, traditional AOPs have mainly focused on hydroxyl radicals (•OH)
as the main reactive oxidative species (ROS) to oxidize organic pollutants [12]. As is well known,
hydrogen peroxide (H2O2) is commonly used as an oxidant to decompose organic pollutants during
the production of •OH under certain conditions [13–15]. However, as a liquid, H2O2 is inconvenient to
transport and easily self-decomposes under normal temperature conditions, which results in a low
utilization rate. Meanwhile, an increasing number of studies have shown that activated persulfate
(PS), including peroxydisulfate (PDS) and peroxymonosulfate (PMS), can produce sulfate radicals
(SO4

•−), which have high oxidizing power for the selective degradation of organic pollutants [16–18].
Comparatively, as solid chemicals, PS are considered convenient for transportation and storage, and
these chemicals are relatively stable at room temperature. Therefore, SO4

•−-based AOPs (SR-AOPs)
have been rapidly applied in water pollution control as alternatives to the •OH-based AOPs [19–24].

The key to the application of the SR-AOPs is to increase the yield of SO4
•−. Usually, the methods

of activating PS have included heat [25], UV [26], and transition metal ions [27]. However, some of
these methods can be expensive, whilst others would cause secondary pollution. Heterogeneous
catalysts for PS activation such as Fe3O4 have become the focus of current research because they do not
pose a secondary pollution problem, have a fast activation rate at normal temperature and pressure,
and the process does not require additional energy consumption [28,29]. These types of catalysts
have the advantages of environmental friendliness, easy magnetic separation, and low cost. However,
their catalytic effects are not satisfactory, and drawbacks also exist, such as low catalytic activity, low
oxidant utilization rate, and incomplete degradation of the organic intermediates. In order to improve
the catalytic performance, different transition metals, such as Cu, Mn, Cr, Co, etc., have been added
to the Fe3O4 [30,31]. Alternatively, humic acid, EDTA, polyhydroquinone, etc., have been coated on
the surface of the Fe3O4 [32–38]. Manganese, a multi-use metal with many stable oxides, has also
been used in bimetallic oxides together with Co where it exhibits higher catalytic ability than Co3O4,
Mn2O3, and their mixtures for PMS activation to degrade Rhodamine B [39]. However, very few
systematic studies have been reported on the heterogeneous catalysts containing Mn, as well as their
catalytic activities on PMS. Therefore, these composite materials may be promising candidates for the
SR-AOPs [40].

This work was aimed at studying the performance of CoMn2O4 in activating PMS for the
degradation properties of a common UV filter, 2-phenylbenzimidazole-5-sulfonic acid (PBSA) [41,42].
Generally, metal oxides could be prepared using several methods, i.e., the coprecipitation, hydrothermal,
and sol-gel methods. Amongst them, the sol-gel method is considered an attractive synthetic method in
which the prepared metal oxides have a higher degree of structural and compositional uniformity [43,44].
Therefore, in this study, CoMn2O4 was prepared using the sol-gel method and then it was characterized
using the following techniques: SEM, TEM, XRD, BET, and XPS [45]. Moreover, the effects of various
factors on the degradation of PBSA were assessed, and the main reactive oxygen species (ROS) in the
PMS/CoMn2O4 system were confirmed as stimulating the activation mechanisms.

2. Materials and Methods

2.1. Materials

Industrial graphene (reduced graphene oxide, rGO, >97%) and carboxylated carbon nanotube
(CNT–COOH, >97%) were obtained from Timesnano (Chengdu, China). Co3O4 (99.5%, 30 nm) and
Mn3O4 (97%) were obtained from Macklin Biochemical Co., Ltd. (Shanghai, China). PBSA (97%)
was obtained from J&K (Shanghai, China) and PMS was obtained from Aladdin (Shanghai, China).
Methanol and formic acid were of HPLC grade obtained from Sigma-Aldrich (Shanghai, China), and
other reagents were of an analytical grade and they were obtained from Macklin Biochemical Co., Ltd.
(Shanghai, China), including Co(NO3)2·6H2O, Mn(NO3)2·4H2O, citric acid, glycine, humic acid (HA),
absolute ethanol (EtOH), and tert-butanol (TBA).
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2.2. Preparation of the CoMn2O4 Catalyst

The CoMn2O4 catalyst was prepared using the sol-gel method as described in Reference [44].
Typically, Co(NO3)2·6H2O (0.015 mol) and Mn(NO3)2·4H2O (0.030 mol) were dissolved in 90 mL of
water, and then glycine (0.045 mol) was added. The obtained solution was then stirred and placed in a
water bath at 80 ◦C until it was completely dissolved. Afterwards, citric acid (0.045 mol) was slowly
added to the solution, which was stirred until a gel was formed. The obtained wet gel was then placed
in an oven and dried at 250 ◦C for 1 h. Subsequently, the obtained dry gel was ground and placed in a
muffle furnace, and then calcined at 500 ◦C for 2 h at 10 ◦C/min to prepare the CoMn2O4 nanopowders.

2.3. Characterization Methods

The surface elemental composition of the sample was analyzed by the ESCALAB 250XI X-ray
photoelectron spectroscopy (XPS) (Thermo Fisher Scientific, Waltham, MA, USA) using Al K-alpha
radiation under conditions optimized for the maximum signal (spot size, 500 µm; lens mode, standard;
analyzer mode, CAE; pass energy 30.0 eV; energy step size, 0.050 eV). Wide scans were recorded for
the CoMn2O4, whilst the core level peaks that were recorded in detail were: C 1s and O 1s, Co 2p and
Mn 2p.

The morphologies were determined using the Quanta400FEG scanning electron microscope (SEM,
FEI, Hillsboro, OR, USA) at 20 kV and the JEM-2100F transmission electron microscope (TEM, JEOL,
Tokyo, Japan). The elemental composition was determined using a Horiba EX-250 energy-dispersive
X-ray (EDX, Kyoto, Japan) at 20 kV.

The crystal structure of the synthesized sample was confirmed through the X-ray diffraction
spectra recorded in the 2θ range of 5–80◦ (scan rate of 0.06◦ s−1), using a Cu–Kα (λ = 0.154 nm)
wavelength D8-advanced X-ray diffractometer (XRD, Bruker, Karlsruhe, Germany) at 40 kV and 30 mA.

The specific surface area and the pore size distribution were determined using the TriStar II
3020 surface area and porosity analyzer (Micromeritics, Atlanta, GA, USA) at the liquid nitrogen
temperature (−196 ◦C).

2.4. Catalytic Test Procedure

Thereafter, 100 mL PBSA solution (5 mg/L) was added in a conical flask. A certain amount of PMS
was then added to the reaction solution, and the mixture was shaken in a water bath at 25 ◦C. The
catalyst CoMn2O4 was then added to initiate the reaction. Then, a 0.8 mL solution was sampled with
a pipette at defined time intervals, filtered through a 0.45 µm microporous membrane, and injected
into a vial of high-performance liquid chromatography (HPLC). The vial was filled with 0.2 mL of
methanol as a quencher. The solution concentration was measured using HPLC.

2.5. Analytical Methods

The concentration of PBSA in the sample was analyzed by a Shimadzu LC-20A HPLC with a
diode array detector (DAD). The specific conditions: an Agilent Zorbax SB-C18 column (4.6 × 250 mm,
5 µm, Santa Clara, CA, USA) was used; the mobile phase was a MeOH and formic acid solution (0.30%);
the flow rate was 1.0 mL/min; the injection volume was 20 µL; and the quantitative wavelength was
303 nm.

Total organic carbon (TOC) was determined using a Liqui TOC II analyzer (Elmentar, Frankfurt,
Germany). Reactive oxidative species (ROS) generated in the CoMn2O4/PMS system were tested
using a Bruker A320 electron paramagnetic resonance (EPR, Karlsruhe, Germany) spectroscopy
with 5,5-dimethy-1-pyrroline (DMPO) as a spin-trapping agent as described in Reference [23].
The parameters were: center field, 3510.0 G; sweep width, 100.0 G; static field, 3410.0 G; microwave
frequency, 9.85 GHz; microwave power, 18.94 mW; modulation frequency, 100.0 G; modulation
amplitude, 1.0 G; time constant, 10.24 ms; conversion time, 30 ms; and sweep time was 30.72 s.
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3. Results and Discussion

3.1. Characterization of the Catalyst

The morphology and structure of the CoMn2O4 were revealed by the SEM and TEM images.
As shown in Figure 1a, it can be seen that the sample was in the form of irregular flakes with a uniform
distribution, where fine particles were distributed on the edge of the block. There was a certain
agglomeration and fluffy accumulation, as well as many pores between the particles. As presented in
Figure 1b, it can be seen that the grains of the CoMn2O4 powder had an irregular polyhedral structure.
Furthermore, the energy-dispersive X-ray (EDX) elemental analysis spectrum of the CoMn2O4 in
Figure 1c indicated that the catalyst contained C, O, Co, and Mn elements. The content of C, O, Co,
and Mn was calculated with the average of four values on different spots, and their values were 5.97,
35.08, 19.48, and 39.46 wt % (Weight %), respectively, as listed in Table 1.
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Figure 1. Scanning electron microscopy (SEM) (a), transmission electron microscopy (TEM) (b) 

images, and energy-dispersive X-ray (EDX) analysis (c) of CoMn2O4. 

Table 1. The content of C, O, Co, and Mn on four spots of the CoMn2O4. 

CoMn2O4 C (wt %) O (wt %) Co (wt %) Mn (wt %) 

Spot 1 5.20 38.67 19.05 37.08 

Spot 2 4.93 33.19 20.31 41.57 

Spot 3 6.25 35.81 19.23 38.70 

Spot 4 7.50 32.65 19.34 40.50 

Average 5.97 35.08 19.48 39.46 

Figure 1. Scanning electron microscopy (SEM) (a), transmission electron microscopy (TEM) (b) images,
and energy-dispersive X-ray (EDX) analysis (c) of CoMn2O4.

Table 1. The content of C, O, Co, and Mn on four spots of the CoMn2O4.

CoMn2O4 C (wt %) O (wt %) Co (wt %) Mn (wt %)

Spot 1 5.20 38.67 19.05 37.08
Spot 2 4.93 33.19 20.31 41.57
Spot 3 6.25 35.81 19.23 38.70
Spot 4 7.50 32.65 19.34 40.50

Average 5.97 35.08 19.48 39.46
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The crystal structure of the CoMn2O4 nanoparticle was examined using XRD, as shown in Figure 2.
The diffraction peaks appeared at 18.2◦, 29.3◦, 31.2◦, 32.8◦, 36.3◦, 38.7◦, 44.7◦, 51.8◦, 54.3◦, 56.5◦, 59.0◦,
60.6◦, 65.1◦, and 74.9◦, respectively, which was consistent with the CoMn2O4 crystalline structure
(JCPDS 77-0471) as in Reference [30]. Moreover, no other peaks were observed on the XRD pattern of
the sample, indicating the high purity of the CoMn2O4 obtained using the sol-gel method.
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Figure 2. X-ray diffraction (XRD) pattern of CoMn2O4.

As shown in Figure 3a, the nitrogen adsorption–desorption isotherm displays a type IV
isotherm with a wide H3 hysteresis area, indicating the existence of mesopores. This can be further
revealed through the corresponding pore–size distribution plots, which was calculated using the BJH
(Barrett-Joyner-Halenda) method from the desorption branch isotherm as shown in Figure 3b. These
pores may be formed by the agglomeration and fluffy accumulation of the CoMn2O4 particles, as
shown in the SEM and TEM images (Figure 1a,b). The specific surface area (SSA) of CoMn2O4 was
approximately 24.23 m2 g−1, which was calculated using the multipoint BET (Brunauer-Emmett-Teller)
method. Figure 3c,d displays XPS surveys of the elemental compositions and chemical states of the
CoMn2O4, respectively. Two components of Co were found in the CoMn2O4, that is Co2+ at 780.5 eV
and Co3+ at 782.0 eV (Figure 3c). Mn existed in three forms, that is, Mn2+, Mn3+, and Mn4+ at 641.1,
642.1, and 643.4 eV, respectively (Figure 3d). This indicated that the Co and Mn species in the CoMn2O4

existed as mixed valences. These results were consistent with the features of spinel-type CoMn2O4.
Thus, the above characterizations confirmed the successful preparation of the CoMn2O4 nanomaterial
by the sol-gel method.

Nanomaterials 2019, 9, x FOR PEER REVIEW 5 of 13 

 

The crystal structure of the CoMn2O4 nanoparticle was examined using XRD, as shown in Figure 

2. The diffraction peaks appeared at 18.2°, 29.3°, 31.2°, 32.8°, 36.3°, 38.7°, 44.7°, 51.8°, 54.3°, 56.5°, 59.0°, 

60.6°, 65.1°, and 74.9°, respectively, which was consistent with the CoMn2O4 crystalline structure 

(JCPDS 77-0471) as in Reference [30]. Moreover, no other peaks were observed on the XRD pattern of 

the sample, indicating the high purity of the CoMn2O4 obtained using the sol-gel method. 

10 20 30 40 50 60 70 80

 

 

 

 

2q (degree)

In
te

n
si

ty
 (

a.
u

.)

 

Figure 2. X-ray diffraction (XRD) pattern of CoMn2O4. 

As shown in Figure 3a, the nitrogen adsorption–desorption isotherm displays a type IV isotherm 

with a wide H3 hysteresis area, indicating the existence of mesopores. This can be further revealed 

through the corresponding pore–size distribution plots, which was calculated using the BJH (Barrett-

Joyner-Halenda) method from the desorption branch isotherm as shown in Figure 3b. These pores 

may be formed by the agglomeration and fluffy accumulation of the CoMn2O4 particles, as shown in 

the SEM and TEM images (Figure 1a,b). The specific surface area (SSA) of CoMn2O4 was 

approximately 24.23 m2 g−1, which was calculated using the multipoint BET (Brunauer-Emmett-

Teller) method. Figure 3c,d displays XPS surveys of the elemental compositions and chemical states 

of the CoMn2O4, respectively. Two components of Co were found in the CoMn2O4, that is Co2+ at 780.5 

eV and Co3+ at 782.0 eV (Figure 3c). Mn existed in three forms, that is, Mn2+, Mn3+, and Mn4+ at 641.1, 

642.1, and 643.4 eV, respectively (Figure 3d). This indicated that the Co and Mn species in the 

CoMn2O4 existed as mixed valences. These results were consistent with the features of spinel-type 

CoMn2O4. Thus, the above characterizations confirmed the successful preparation of the CoMn2O4 

nanomaterial by the sol-gel method. 

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50
(a)

Q
ua

nt
it

y 
ad

so
rb

ed
 (

cm
3 /g

)

Relative pressure (P/P0)  

0 20 40 60 80 100 120

0.00

0.02

0.04

0.06

0.08

0.10

d
V

/l
o

g
D

 (
cm

3
/g

)

Pore diameter (nm)

(b)

 

Figure 3. Cont.



Nanomaterials 2019, 9, 774 6 of 13
Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 13 

 

792 790 788 786 784 782 780 778 776

In
te

n
si

ty
 (

a.
u
.)

B.E. (eV)

Co 2p

Co2+

Co3+

(c)

 

648 646 644 642 640 638

In
te

n
si

ty
 (

a
.u

.)

B.E. (eV)

Mn 2p

Mn4+ Mn3+

Mn2+

(d)

 

Figure 3. N2 adsorption–desorption isotherms (a) and pore size distributions (b); Co 2p (c) and Mn 

2p (d) spectrum of CoMn2O4. 

3.2. Catalytic Oxidation of the PBSA 

To investigate the activation efficiencies of various catalysts/PMS systems, dynamic experiments 

to remove the PBSA were conducted as shown in Figure 4. From Figure 4a,b, neither the conventional 

nanocarbons (CNT–COOH and rGO) nor the classical metal catalysts (Co3O4 and Mn3O4) were 

effective in activating PMS to remove the PBSA under the selected conditions. Comparatively, the 

CoMn2O4/PMS system not only exhibited considerable removal efficiency of the PBSA but also 

showed a universality for the degradation of other pollutants (e.g., UV filter benzophenone-4 (BP-4) 

and phenol). 

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

[P
B

S
A

]/
[P

B
S

A
] 0

Time (min)

 CoMn
2
O

4

 CNT

 rGO

 Co
3
O

4

 Mn
3
O

4

(a)

 

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0  PBSA

 BP-4

 Phenol

[P
B

S
A

]/
[P

B
S

A
] 0

Time (min)

(b)

 

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

 

 

[P
B

S
A

]/
[P

B
S

A
] 0

Time (min)

 only catalyst

 25 mg/L

 50 mg/L

 100 mg/L

CoMn2O4

(c)

 

0 10 20 30 40 50 60

0.0

0.2

0.4

0.6

0.8

1.0

  

 

[P
B

S
A

]/
[P

B
S

A
] 0

Time (min)

 only PMS

 125 mg/L

 250 mg/L

 500 mg/L

PMS(d)

 

Figure 3. N2 adsorption–desorption isotherms (a) and pore size distributions (b); Co 2p (c) and Mn 2p
(d) spectrum of CoMn2O4.

3.2. Catalytic Oxidation of the PBSA

To investigate the activation efficiencies of various catalysts/PMS systems, dynamic experiments
to remove the PBSA were conducted as shown in Figure 4. From Figure 4a,b, neither the conventional
nanocarbons (CNT–COOH and rGO) nor the classical metal catalysts (Co3O4 and Mn3O4) were
effective in activating PMS to remove the PBSA under the selected conditions. Comparatively, the
CoMn2O4/PMS system not only exhibited considerable removal efficiency of the PBSA but also showed
a universality for the degradation of other pollutants (e.g., UV filter benzophenone-4 (BP-4) and phenol).
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Conditions: [PBSA] = 5 mg L−1; [BP-4] = [phenol] = 18.23 mM; [catalyst] = 50 mg L−1 (10 mg L−1,
Figure e); [PMS] = 250 mg L−1; T = 25 ◦C; and without pH adjustment.

The dosage of the catalysts is a key index in the process of oxidative degradation. Figure 4c shows
the effect of different amounts of CoMn2O4 on the degradation of the PBSA. In the absence of PMS,
the CoMn2O4 could not remove the PBSA effectively even though the concentration of CoMn2O4

was increased to 50 mg/L. This indicated the weak adsorption of CoMn2O4 (at only about 16%).
With 250 mg/L PMS, the CoMn2O4 could efficiently activate the PMS to degrade the PBSA, and the
degradation reaction conformed to the pseudo-first-order kinetics. The calculated first-order rate
constant (k) at 100 mg L−1 was 1.47 × 10−1 min−1, which was 2.2 times higher than that at 25 mg L−1

CoMn2O4 (6.67 × 10−2 min−1). The degradation rate of the PBSA was increased together with the
amount of the catalyst because the catalytically active sites increased with the amount of CoMn2O4,
and thus more active sites could activate PMS to produce more ROS.

As a precursor to SO4
•−, the concentration of PMS has a great influence on the degradation of

pollutants. The effect of different concentrations of PMS on the degradation of the PBSA was also
estimated and shown in Figure 4d. The PMS alone could not degrade PBSA when there was no catalyst
present. With the increasing amount of PMS, the degradation rate of the PBSA also increased. The k
value increased from 0.30 × 10−1 to 1.06 × 10−1 min−1 when the PMS dosage was increased from 125 to
250 mg L−1, and this value could be further increased to 1.87 × 10−1 min−1 with an increased dosage
of PMS (500 mg L−1). Under certain conditions of the catalyst (50 mg/L) and within a certain range,
the PMS amount was increased, leading to the increasing generation of SO4

•−, which consequently
accelerated the catalytic degradation rate of the PBSA.

In the CoMn2O4/PMS system, the removal of the PBSA was also affected by the reaction
temperature. As shown in Figure 4e, the higher temperature had a positive effect on the removal of the
PBSA. When the dosages of CoMn2O4 and PMS were individually set as 10 and 250 mg/L, respectively,
the degradation rate of the PBSA reached 65.87% after 40 min at 25 ◦C, and when the temperature was
increased to 35 ◦C, the degradation rate increased to 93.76%. Thereafter, the temperature was further
increased to 45 ◦C, the complete removal of PBSA was observed after 14 min. This indicated that the
oxidation reaction was an endothermic reaction. The elevated reaction temperature could significantly
increase the degradation rate of the PBSA. The k values at 25, 35, and 45 ◦C were 2.73 × 10−2, 4.53 × 10−2,
and 2.30 × 10−1 min−1, respectively, and thus the activation energy of the reaction was calculated to be
93.12 kJ/mol according to the Arrhenius equation.

The addition of PMS would significantly reduce the solution pH value. The pH of the PBSA
solution would reduce from approximately an initial value of 7.3 to 3.4 after the addition of PMS. Thus
to examine the effects of real pH on the activation efficiency of CoMn2O4, the PBSA solution and a
certain amount of PMS were added into a conical flask, followed by a pH adjustment with NaOH
(0.01 M) or H2SO4 (0.01 M). As shown in Figure 4f, the PBSA did not degrade well in a more acidic
and alkaline environment. The above experimental phenomena could be explained by the following
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two aspects: on the one hand, the declined performance at an acidic pH may be due to the formation
of CoOH+, which limits the formation of SO4

•−; whilst the poor performance at an alkaline pH may
be associated with the formation of less-reactive Co(OH)2 precipitates [40]. On the other hand, the
combined effect of the pKa of PMS (9.4, second pKa of its parent acid), the point of zero charge value of
CoMn2O4 (around 7.2), and the pKa of PBSA (pKa1 = 4.0 and pKa2 = 11.9) might have also contributed
to the observed results [46].

The dissolved organic matter (DOM) is an important factor because it might quench the free
radicals, and thus affect the degradation of the target contaminants. HA represents a typical organic
matter in sewage and surface waters. Therefore, the effect of HA on the catalytic PMS oxidation of PBSA
by CoMn2O4 was studied. As shown in Figure 5, the degradation of the PBSA was inhibited when the
HA (1–10 mg/L) was added to the system, and this inhibition intensified as the concentration of HA
increased. Specifically, 1 mg/L of HA had little effect on the degradation of the PBSA by CoMn2O4;
whereas, when the HA concentration was increased to 10 mg/L, the removal rate of the PBSA in 30 min
had significantly decreased from 91.24% to 67.92%. The corresponding k values were 4.80 × 10−2 min−1

and 3.53 × 10−2 min−1 at the HA levels of 1.0 and 10.0 mg L−1, respectively. The reason may be that
HA acts as a degradable organic substance in competition with the PBSA to react with ROS such as
free radicals in the system [24].
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Figure 5. Influence of humic acid (HA) on PBSA removal. Condition: [PBSA] = 5 mg L−1;
[catalyst] = 50 mg L−1; [PMS] = 250 mg L−1; T = 25 ◦C; and without pH adjustment.

In this experiment, we measured the TOC removal of the reaction solutions, and the results are
shown in Figure 6a. The TOC removal rate of PBSA in the CoMn2O4/PMS system was 29.59% after
60 min, indicating that the CoMn2O4/PMS system could not only rapidly degrade the PBSA, but it
could also convert it into CO2, H2O, and other inorganic substances.
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Figure 6. Total organic carbon (TOC) removal of the PBSA oxidized by the CoMn2O4-activated PMS
system (a); Degradation of the PBSA using the recycled catalyst (b). Conditions: [PBSA] = 5 mg L−1;
[catalyst] = 50 mg L−1; [PMS] = 250 mg L−1; T = 25 ◦C; and without pH adjustment.
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In this study, the catalyst was separated and dried after the catalytic degradation reaction.
The recyclability of the CoMn2O4 was evaluated through a multi-cycle experiment of the treated
catalyst, and the results are shown in Figure 6b. It could be seen that approximately 80% of the PBSA
could be eliminated within 60 min after undergoing the reactions for three repetitions, indicating
reasonable stability and reusability of the catalyst.

3.3. Activation Mechanism

Classical quenching tests were carried out to distinguish the contribution of different ROS in
the CoMn2O4/PMS system. Typically, a certain amount of ethanol (EtOH) or tert-butanol (TBA) was
added to the system. As shown in Figure 7, using a 1000:1 molar ratio of EtOH (or TBA) to PMS, the
degradation rate was obviously inhibited, indicating the dominated role of the •OH and SO4

•− in
the PBSA removal [47,48]. Moreover, we could judge that the major ROS in the reaction system was
mainly •OH, rather than SO4

•−. To further confirm this assumption, EPR tests were carried out, as
shown in Figure 8. After five min, DMPO–OH and DMPO–SO4 signals were observed, and these
results were consistent with the radical quenching tests.
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Figure 8. Electron paramagnetic resonance (EPR) spectra of the 5,5-dimethy-1-pyrroline (DMPO)
adduct (DMPO–OH and DMPO–SO4) formed after five min in the CoMn2O4/PMS system. Conditions:
[catalyst] = 50 mg L−1; [PMS] = 250 mg L−1; T = 25 ◦C; [DMPO] = 20 mM.

Based on the results from the XPS survey, classical quenching, and EPR tests, a possible mechanism
for PMS activation by CoMn2O4 was proposed under the selected reaction conditions. The specific
catalytic reaction process is as follows: PMS first reacts with Co and Mn ions (≡Co2+, ≡Mn2+, and
≡Mn3+) on the surface of CoMn2O4, producing SO4

•− (Equations (1)–(3)). Then, it produces SO4
•−
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which reacts with water to produce •OH (Equation (4)), and finally, the SO4
•− and •OH degrade and

mineralize the PBSA, as described in Reference [40].

≡Co2+ + HSO5
−
→≡Co3+ + SO4

•− + OH− (1)

≡Mn2+ + HSO5
−
→≡Mn3+ + SO4

•− + OH− (2)

≡Mn3+ + HSO5
−
→≡Mn4+ + SO4

•− + OH− (3)

SO4
•− + H2O→ •OH + H+ + SO4

2− (4)

4. Conclusions

In this study, a CoMn2O4 catalyst was synthesized using the sol-gel method, and the obtained
catalyst had high catalytic activity for PMS to degrade the PBSA. The degradation of the PBSA
was mainly affected by several factors, such as catalyst dosage, PMS concentration, and reaction
temperature. In the reaction system, chemical scavenger and electron paramagnetic resonance (EPR)
tests proved that •OH and SO4

•− were the major radicals, playing a dominant role in the PBSA
degradation. In addition, the efficient catalytic performance might be attributed to the Co–Mn synergy
in the synthesized material. These findings might contribute to the potential application of CoMn2O4

in SR-AOPs.
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