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Abstract: We report on the synthesis of CuInTe2 nanoparticles and their function in photovoltaic
equipment, such as solar cells. Under certain synthesis conditions, the CuInTe2 nanocrystals form
shape with nanocrystals, nanorods or nanocubes. It was found that CuTe nanocrystals could be
converted to CuInTe2 by addition of an In reactant. CuInTe2 nanorods were synthesized using
this method.
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1. Introduction

I–III–VI2 semiconductors have proved to be one of the highest power conversion efficiency
photovoltaic materials in thin film photovoltaic applications [1–4]. In particular, cells with efficiency
exceeding 20% has been produced using the Cu(In,Ga)Se2 as a solar absorber layer [5].

Copper indium telluride (CuInTe2) is mainly used as an important I–III–VI2 semiconductor,
which has application in thermoelectric [6], photoluminescence [7], nanowire [8–10], and photovoltaic
devices [11–15]. The direct bandgap of CuInTe2 is between 0.91 and 1.02 eV [16] at around 27 ◦C,
which is slightly narrower in comparison to CuInSe2 thin film (1.04 eV) [17]. The narrow bandgap
absorber (Eg < 1 eV) is required for making use of the bottom cells for multi-junction (tandem) solar
cells. Meanwhile, CuInTe2 single-junction photovoltaic devices (PVs) have been made with power
conversion efficiency (PCEs) of up to 5.1% [18]. Compared to CuInS2 and CuInSe2, CuInTe2 provides a
more significant quantum confinement effect and a greater Bohr radius, with the virtue of the covalent
property of tellurium [19].

The record efficiency PV materials of Cu(In, Ga)Se2 [5], and CuInTe2 [18] are fabricated by
co-evaporation, which leads to a sharp increase of the costs. Cu(In,Ga)Se (CIGS) has been fabricated as
a nanoparticle dispersion solar coating that can be printed or sprayed. Therefore, it could, ideally, omit
the procurement of intensive postdeposition [20]. Solar paints could adopt large and continuous
roll-to-roll technology on almost all types of surfaces with moderate conditions. The CuInTe2

nanocrystals can be obtained either with microwave irradiation [21,22], by solvothermal synthesis [23],

Nanomaterials 2019, 9, 409; doi:10.3390/nano9030409 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-3752-8522
https://orcid.org/0000-0001-8949-6230
http://www.mdpi.com/2079-4991/9/3/409?type=check_update&version=1
http://dx.doi.org/10.3390/nano9030409
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2019, 9, 409 2 of 11

or by using a silicate matrix method [19]. However, by using these methods, the CuInTe2 was heavily
aggregated and could not be well dispersed and; thus, could not be used for solar paints.

We demonstrate the potential of stearic acid to govern the fabrication of CuInTe2 nanocrystals
and detail a facile synthetic approach for CuInTe2 nanocrystals. The CuInTe2 nanocrystals are used
for PVs and show preliminary efficiency. We further demonstrate the growth mechanism of CuInTe2

nanocrystals and evolve it into a general method to directly convert CuTe into CuInTe2.
Except for the size control of CuInTe2 nanoparticles, stearic acid can also improve the dispersity

of CuInTe2 nanoparticles in polar solvent and; thus, can be used for solar paints. The cation exchange
routes give us a new synthetic method to synthesis CuInTe2 with a nanorod morphology, which has
not been reported previously.

2. Materials and Methods

2.1. Materials

Tellurium powder (99.99%), copper(II) acetylacetonate (Cu(acac)2) (99.99+%), CuCl (99.99+%),
Indium(III) acetylacetonate (In(acac)3) (99.99+%), stearic acid (98.5+%), trioctylphosphine (TOP)
(97%), 1-octadecene (ODE) (90%), and CdSO4 (99.999%) were received from Aldrich Chemical Co.
(Milwaukee, United States); Oleylamine (OLA) from TCI America (Portland, United States); ethanol
(absolute), toluene (99.99%), and ammonium hydroxide (18 M NH3; ACS certified) from Fisher
Scientific (Waltham, United States); and thiourea (>99.0%) from Sigma-Aldrich (St. Louis, United
States). Oleylamine was degassed overnight at 110 ◦C under vacuum. All other chemicals were used
without additional purification.

2.2. CuInTe2 Nanocrystals (2 mmol stearic acid) Synthesis

In a typical synthesis, 0.5 mmol of Cu(acac)2 and 0.5 mmol of In(acac)3 were mixed with
2 mmol stearic acid and 12 mL of ODE in a 25 mL three-neck flask. The mixture was heated under
vacuum to 110 ◦C to obtain a clear blue solution and kept at this temperature for 30 min to remove
low-boiling-point impurities. 0.5 mmol OLA was injected into the flask and the mixture was degassed
for a further 30 min. The temperature was then increased, under nitrogen, to 170 ◦C and 1.0 mL of 1 M
TOP-Te was injected into the flask. Upon injection, the solution color immediately changed to dark
brown. Just after injection, the temperature was set to 230 ◦C, and CuInTe2 nanocrystals were allowed
to grow for 20 min. After cooling to room temperature, centrifugation was used to wash the particles
using ethanol and toluene as antisolvent and solvent, respectively. Toluene was added to reach a final
nanocrystal concentration of 20 mg/mL.

2.3. CuInTe2 Nanocrystals (4 mmol stearic acid) Synthesis

The same procedures were carried out to get larger size CuInTe2 nanocrystals, but stearic acid
was increased from 2 to 4 mmol.

2.4. CuTe Nanocubes Synthesis

1.0 mmol of CuCl was mixed with 12 mL of OLA in a 25 mL flask. The mixture was heated
under vacuum to 110 ◦C to obtain a clear solution and kept at this temperature for 30 min to remove
low-boiling-point impurities. The temperature was then increased, under nitrogen, to 180 ◦C and
1.0 mL of 1 M TOP-Te was injected into the flask. Upon injection, the solution color immediately
changed to deep green. CuTe nanocubes were allowed to grow for 60 min. After cooling to room
temperature, centrifugation was used to wash the particles using ethanol and toluene as antisolvent
and solvent, respectively. Toluene was added to reach a final nanocrystal concentration of 20 mg/mL.
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2.5. CuTe Nanorods Synthesis

The same procedures were carried out to get the CuTe nanorods, but the TOP-Te injection
temperature was lowered to 90 ◦C.

2.6. Conversion of CuTe to CuInTe2

0.5 mmol (0.096g) of CuTe (without taking the mass fraction of ligands into account) and 0.5 mmol
of In(acac)3 were mixed with 4 mmol of stearic acid and 12 mL of ODE in a 25 mL three-neck flask.
The mixture was heated under vacuum to 110 ◦C and kept at this temperature for 30 min to remove
low-boiling-point impurities. 0.5 mmol OLA was injected into the flask and the mixture was degassed
for a further 30 min. The temperature was then increased, under nitrogen, to 170 ◦C and 0.5 mL of 1 M
TOP-Te was injected into the flask. The temperature was set to 230 ◦C, and the convert process was
allowed for 20 min. After cooling to room temperature, centrifugation was used to wash the particles
using ethanol and toluene as antisolvent and solvent, respectively. Toluene was added to reach a final
nanocrystal concentration of 20 mg/mL.

2.7. Materials Characterization

Current−potential (IV) characteristics were collected using a Keithley 2400 source meter under
AM 1.5G illumination (100 mW/cm2). The National Institute of Standards and Technology (NIST)
calibrated Si photodiode (Hamamatsu, S1787−08) was used to tune light intensity. External quantum
efficiency (EQE) was measured as previously described [24]. Monochromatic light (Newport
Cornerstone 260 1/4M) at wavelengths ranging from 300 to 1300 nm, in 10 nm steps, was chopped
at 213 Hz and focused to a 1-mm diameter spot size on the device at zero bias. EQE was measured
using a lock-inamplifier (Stanford Research Systems, model SR830) after calibrating light intensity
with silicon (Hamamatsu) and germanium (Judson) photodiodes.

Low-resolution transmission electron microscopy (TEM) images were acquired on a FEI Tecnai
Spirit Bio Twin operated at 80 kV. High-resolution transmission microscopy (HRTEM) images were
acquired on a field emission JEOL 2010F TEM operated at 200 kV. The JEOL 2010F TEM is equipped
with an Oxford INCA EDS detector, which was used to collect EDS data. UV−vis−NIR absorbance
spectra were acquired with a Varian Cary 500 UV−vis−NIR spectrophotometer.

X-ray diffraction (XRD) was performed using a Rigaku R-Axis Spider diffractometer with an
image-plate detector and Cu Kα (λ = 1.54 Å) radiation operated at 40 kV and 40 mA, respectively. XRD
samples were prepared by drying a drop of concentrated nanoparticle dispersion onto a glass slide
in a glovebox. The nanocrystal powder was then suspended on a 0.5 mm nylon loop using mineral
oil for analysis. Samples were scanned for 10 min while rotating at 5◦/s. The 2D diffraction patterns
were integrated using the Rigaku 2DP powder processing suite, with subtraction of the background
scattering from the nylon loop and mineral oil.

Raman spectroscopy was performed using a 514 nm Ar ion laser source operated at 0.5 mW
using a Renishaw microscope system set up in reflection mode. The beam was focused through a 50×
objective, making a spot size approximately 1.3 µm in diameter on the sample.

2.8. Device Fabrication

CuInTe2 nanocrystal PVs were fabricated with an Au/CuInTe2/CdS/i-ZnO/indium tin oxide
(ITO) device structure. A 5 nm layer of Cr followed by 60 nm of Au were thermally deposited onto soda
lime glass (Delta Technologies, 25 × 25 × 1.1 mm polished float glass). Films of CuInTe2 nanocrystals
were spray deposited from toluene at room temperature. A CdS buffer layer was deposited by
dropping 0.7 mL of a CdS precursor solution (1.25 mL of 15 mM CdSO4, 2.2 mL of 1.5 M thiourea,
and 2.8 mL of 18 M NH4OH in water) onto the CuInTe2 nanocrystal film, heated to 95 ◦C on a hot
plate, and covered with an inverted crystallization dish for 2 min. The substrate was removed from
the hot plate, rinsed with deionization (DI) water, and dried with a stream of compressed air. Top
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layers of i-ZnO and ITO were deposited by radio frequency (RF) sputtering from a ZnO target (Lesker,
99.9%) in a 0.5% O2 in Ar atmosphere (Praxair, 99.95%) and an ITO target (Lesker, 99.99% In2O3:SnO2

90:10) in Ar atmosphere (Praxair, research grade). ZnO and ITO were deposited selectively onto
8 rectangular regions with active device areas of 0.08 cm2. Silver paint was applied for electrical contact
to the devices.

3. Results

The nanocrystals were confirmed as sphalerite (cubic) CuInTe2 through X-ray diffraction (XRD),
which are shown in Figure 1. EDS from fields of the nanoparticles showed the mean Cu/In/Te
composition of 0.24:0.28:0.48, which was close to the ideal target 0.25:0.25:0.50 ratio. The band gap
energy was 1.0 eV through the optical absorbance spectra of nanocrystals dispersion. And the 1.0 eV
was near to the reference value 1.02 eV for CuInTe2 [6].
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Figure 1. X-ray diffraction (XRD) of CuInTe2 nanocrystals (2 mmol stearic acid). The peak labels
correspond to those of sphalerite (cubic) CuInTe2 (PDF No. 43-1401). Inset: CuInTe2 nanoparticles are
dispersed in toluene and their UV-vis-near infrared absorbance spectrum is demonstrated.

TEM images of CuInTe2 nanocrystals are revealed in Figure 2. The mean diameter of nanocrystals
was 15.3 ± 3.6 nm, which were crystalline. Many of these CuInTe2 nanocrystals had sharp edges, which
was also observed on the surface of co-evaporated CuInTe2 films [18]. Compared to co-evaporated
CuInSe2 films, under the same co-evaporated conditions, CuInTe2 film had larger and more faceted
surface [25], which relate to the physical properties of a relatively low epitaxy reaction temperature
(347 ◦C) and melting point (789 ◦C).
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As shown in Figure 3, peaks were deconvoluted using Lorentzians. The most prominent
of these peaks appeared at 131 cm−1, which we assigned to the A1 mode of CuInTe2. This A1

mode shifted to higher wavenumbers compared to the previously calculated and observed value
(127 cm−1). [26] Similar shifts of the A1 mode have been previously studied in CuInSe2 and indicate a
lack of chalcopyrite cation ordering [27,28]. In sphalerite CuInSe2, such a shift of the A1 mode to higher
wavenumbers was accompanied by the disappearance of certain XRD peaks that are characteristic
of the chalcopyrite structure. Those missing peaks all have odd integers for l in the Miller index (hkl)
and, if present, would confirm chalcopyrite cation ordering. From Figure 3, it can be seen that the
nanocrystals used in this investigation lacked diffraction peaks containing odd values of l. Due to the
shift of the A1 mode to higher wavenumbers and the lack of diffraction peaks containing odd l-values,
the shalerite structure was confirmed.
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Furthermore, the deconvoluted Raman peaks at 156 cm−1 and 170 cm−1 were in good agreement
with previously observed peaks (158.5 cm−1 and 169.9 cm−1) [26], and match fairly well to the
theoretically estimated E2 (160.8 cm−1) and E3 (171.5 cm−1) CuInTe2 modes [29] based on a simplified
Keating model. Full Lorentzian fit parameters are found in the Table S1.

For the CuInTe2 nanocrystals, the size and morphology can be governed through adjusting the
stearic acid/metal ratio. Figure 4 demonstrates the CuInTe2 about the morphology of nanocrystals
(4 mmol stearic acid), obtained by increasing the stearic acid–metal ratio from 4:1 to 8:1. The CuInTe2

nanocrystals (4 mmol stearic acid) were crystalline (Figure 4d) and had triangle-shaped edges and
bodies (Figure 4c). XRD (Figure S1) confirmed that the nanocrystals (4 mmol stearic acid) were
sphalerite (cubic) CuInTe2. We assumed that stearic acid concentration dominated nanocrystals
nucleation. When the concentration of stearic acid was increased, a lower nucleation rate was initially
obtained, increasing the total amount of precursor for posterior nanocrystals growth. Consequently,
these larger CuInTe2 nanocrystals (4 mmol stearic acid) were ultimately obtained. Meanwhile,
compared to CuInSe2 nanoparticles under similar synthetic conditions [20], the morphology of CuInTe2

nanoparticles were more faceted. Similar results have been reported in the synthesis of CuInTe2 and
CuInSe2 thin films by the co-evaporation system under the same growth conditions. This notable
morphology feature of CuInTe2-based thin films relates to the physical properties of a relatively low
epitaxy temperature (347 ◦C) [30] and melting point (789 ◦C) [31] compared to CuInSe2. Models for
the different crystal growth mechanisms, symmetrical polyhedrons, are presented elsewhere [32].
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The composition of the CuInTe2 nanocrystals (4 mmol stearic acid) was ascertained by the
elemental maps from energy-dispersive X-ray (EDX) spectroscopy (Figure 5). EDS from the sample of
the CuInTe2 nanocrystals (4 mmol stearic acid) revealed a mean Cu–In–Te containment of 0.24:0.26:0.50.

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 11 

 

 

Figure 4. TEM (a–c) and HRTEM (d) of CuInTe2 nanocrystals (4 mmol stearic acid). 

The composition of the CuInTe2 nanocrystals (4 mmol stearic acid) was ascertained by the 
elemental maps from energy-dispersive X-ray (EDX) spectroscopy (Figure 5). EDS from the sample 
of the CuInTe2 nanocrystals (4 mmol stearic acid) revealed a mean Cu–In–Te containment of 
0.24:0.26:0.50. 

 

Figure 5. Scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX) 
elemental mapping of Cu, In, and Te of CuInTe2 nanocrystals (4 mmol stearic acid). 

Photovoltaic devices were fabricated by using CuInTe2 nanocrystals as the absorber layer (2 
mmol stearic acid). Similar to CIGS, CuInTe2 coatings were typically p-type [33], and test equipment 
was composed of a layered structure that consisted of Au/CuInTe2/CdS/ZnO/indium tin oxide (ITO). 
CuInTe2 nanocrystals were deposited by spray coating with a toluene dispersion. The anneal was 
unnecessary for the nanocrystal layer. Figure 6 (in Table S2 and Figure S6) displays the PV response 
of a typical device having an open-circuit voltage (VOC) of 342 mV, a short-circuit current density 
(JSC) of 10.651 mA/cm2, a fill factor (FF) of 0.335, and a power conversion efficiency (PCE) of 1.221% 

Figure 5. Scanning transmission electron microscopy (STEM) and energy-dispersive X-ray (EDX)
elemental mapping of Cu, In, and Te of CuInTe2 nanocrystals (4 mmol stearic acid).

Photovoltaic devices were fabricated by using CuInTe2 nanocrystals as the absorber layer (2 mmol
stearic acid). Similar to CIGS, CuInTe2 coatings were typically p-type [33], and test equipment was
composed of a layered structure that consisted of Au/CuInTe2/CdS/ZnO/indium tin oxide (ITO).
CuInTe2 nanocrystals were deposited by spray coating with a toluene dispersion. The anneal was
unnecessary for the nanocrystal layer. Figure 6 (in Table S2 and Figure S6) displays the PV response
of a typical device having an open-circuit voltage (VOC) of 342 mV, a short-circuit current density
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(JSC) of 10.651 mA/cm2, a fill factor (FF) of 0.335, and a power conversion efficiency (PCE) of 1.221%
with the conditions AM 1.5. Compared with the previous report [12], the photovoltaic performance
parameters (Voc, Jsc, and FF) were lower. The reason was that the absorber layer was not annealed or
chemically treated.
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The incident photon conversion efficiency (IPCE) (Figure 7) was in accordance with the absorbance
spectra of the CuInTe2 nanoparticles. Additionally, the response results were ascertained by the
CuInTe2 nanoparticles. The relatively high IPCE of ∼22.5%, for wavelengths between 400 and 500 nm,
tailed off at higher wavelengths. The strong photovoltaic response of IPCE in the 400–500 nm region
might have been due to the cadmium sulfide (CdS) layer [34–36]. The long wavelength IPCE cutoff at
∼1250 nm corresponded to the optical gap (1.02 eV) of the CuInTe2 nanoparticles, and the sharp drop
in IPCE at wavelengths <400 nm was the result of ZnO light absorption [20].
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Time-chasing XRD studies of CuInTe2 nanocrystals were carried out to obtain information on the
growth mechanism of this system. XRD (Figure 8a) showed that when the reaction time was 5 min,
CuTe nanocrystals formed as a major phase together with minor CuInTe2. The reason for CuTe forming
as the major phase, formed in the initial stage of the reaction, may be due to the greater reactivity of



Nanomaterials 2019, 9, 409 8 of 11

the Cu-aliphatic amines complex, compared with In-aliphatic amines complexes [37]. After 10 min
of the reaction, CuInTe2 ends up being favored (Figure 8b). However, it is interesting to hypothesize
CuTe being converted into CuInTe2 as a transition according to TEM images shown in the Figure 9.
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Following this growth mechanism hypothesis, we successfully directly converted CuTe nanorods
(TEM in Figure 9a, XRD data in Figure S2a) and CuTe nanocubes (TEM in Figure 9c, XRD data in
Figure S2c) into CuInTe2 nanorods (TEM in Figure 9b, XRD data in Figure S2b, HR-TEM in Figure S5a)
and CuInTe2 nanocubes (TEM in Figure 9d, XRD data in Figure S2d, HR-TEM in Figure S5b) under the
same reaction conditions (Figure S2). CuTe nanorods and nanocubes can be synthesized by varying
the TOP-Te injection temperature in the OLA system (Figure 9a,c). XRD and HRTEM (Figures S2
and S5) proved the crystal phase, composition, and lattice structure of CuInTe2. Time-chasing XRD
(Figures S3 and S4) of the converting process also confirmed that, after the reaction at 5 min, CuInTe2
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started forming. It should be a facile and general method to directly convert CuTe (with different
morphologies) into CuInTe2.

As per the TEM (Figure 10) shown, it was the hypothesis that when the convert reaction time was
5 min, the converting process of the CuInTe2 started at the two ends of the CuTe nanorods and at the
surface of the CuTe nanocubes.
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