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Abstract: Separators are a vital component to ensure the safety of lithium-ion batteries.
However, the commercial separators employed in lithium ion batteries are inefficient due to their
low porosity. In the present study, a simple electrospinning technique is adopted to prepare highly
porous polyacrylonitrile (PAN)-based membranes with a higher concentration of lithium aluminum
titanium phosphate (LATP) ceramic particles, as a viable alternative to the commercialized separators
used in lithium ion batteries. The effect of the LATP particles on the morphology of the porous
membranes is demonstrated through Field emission scattering electron microscopy. X-ray diffraction
and Fourier transform infrared spectra studies suitably demonstrate the mixing of PAN and LATP
particles in the polymer matrix. PAN with 30 wt% LATP (P-L30) exhibits an enhanced porosity of 90%
and is more thermally stable, with the highest electrolyte uptake among all the prepared membranes.
Due to better electrolyte uptake, the P-L30 membrane demonstrates an improved ionic conductivity
of 1.7 mS/cm. A coin cell prepared with a P-L30 membrane and a LiFePO4 cathode demonstrates the
highest discharge capacity of 158 mAh/g at 0.5C rate. The coin cell with the P-L30 membrane also
displays good cycling stability by retaining 87% of the initial discharge capacity after 200 cycles of
charging and discharging at 0.5C rate.
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1. Introduction

A negligible memory effect, superior energy density, long cycle life, and environmental friendliness
are some of the important characteristics that have allowed lithium ion batteries to dominate the
commercial secondary battery market over the last three decades. Owing to their incredible advantages,
lithium ion batteries are employed in various fields from smart phones to large electric vehicles [1–9].
In general, electrodes (i.e., anode and cathode), electrolytes, and separators constitute a lithium ion
battery. Among these, the separator is an intrinsic component, as the safety of the lithium ion battery
relies on its properties. The separator is the component that keeps the two electrodes apart, as their
contact may lead to the battery short-circuiting. Apart from this, the separator is very valuable in terms
of assisting ion transportation during both charging and discharging of the lithium ion battery [10–16].
Enhanced porosity, good electrolyte uptake, and better thermal stability are some of the essential
features that help polymer membranes qualify as a competent separator for lithium ion batteries [17].
There are many methods for fabricating separators for lithium ion batteries, such as solvent casting,
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non-solvent-induced phase separation, electrospinning, the dry and wet method, and thermally
induced phase separation. Of these, electrospinning is the most favorable technique for preparing
separators due to its simple process and its ability to generate highly porous polymer membranes [18].

Until now, the commercial separator primarily employed in large-scale battery production has
consisted of polyethylene and/or polypropylene because of the benefits these materials have when
used as a separator, such as their economical cost, high electrochemical sturdiness, superior mechanical
strength, and inbuilt shutdown feature, which prevent small functions in the case of increased
temperatures. These features make polyolefin-based separators the primary choice for battery
manufacturers. Despite such remarkable characteristics, polyolefin-based separators still suffer from
some vital limitations that lead to poor electrochemical properties. These disadvantages include low
porosity, electrolyte uptake, and inferior thermal stability [19–22]. To counteract the above-mentioned
issues associated with the commercialized separators, there is a need to prepare highly porous polymer
membranes that have good affinity towards liquid electrolytes and act as a gel polymer electrolyte (GPE)
once impregnated with liquid electrolytes. Owing to the combined characteristics of solid and liquid
electrolytes, these GPEs have displayed an improved ionic conductivity in the order of 10−3 S/cm while
providing better safety to the lithium ion battery [23,24]. Poly(vinyl alcohol) (PVA) [25], poly(vinylidene
fluoride) (PVDF) [26,27], polyacrylonitrile (PAN) [28,29], poly(methyl methacrylate) (PMMA) [30],
and poly(vinylidene fluoride-hexafluropropylene) (PVDF-HFP) [31,32] are the polymer host materials
primarily employed in the preparation of the GPE. PAN has some interesting features that assist it in
qualifying as a good choice for preparing porous polymer membranes. Owing to the presence of a
polar cyano group, PAN facilitates better transport of lithium ions. Apart from that, the stability of
PAN in terms of its electrochemical and thermal behavior is sufficient. Additionally, it also does not
react with the electrolytes used in the battery. In fact, PAN displays better gelation characteristics once
it comes in contact with the liquid electrolyte due to the enhanced electrolyte uptake of the PAN-based
membrane [33–35].

The introduction of ceramic materials into the polymer matrix can lead to some extraordinary
characteristics owing to the mixed benefits of the two different types of materials and assists in enhancing
the mechanical and thermal behaviors of the pristine polymer. Apart from that, the electrochemical
features of the polymer membrane are also improved with the addition of ceramics into the polymer
matrix due to the greater compatibility with the electrodes [36–38]. Among the different available
ceramic materials, lithium aluminum titanium phosphate (LATP) has been often exploited as a solid
state electrolyte owing to its high ionic conductivity of approximately 10−4 S/cm [39]. The improved
ionic conductivity of the LATP particles can be attributed to the 3D interlocking network established due
to the unique structure of LATP [40]. The polymer-LATP composite has been previously investigated
as a composite electrolyte. Forsyth et al. used LATP as an additive to the polymer salt matrix of
polyurethane and lithium triflate to observe how the polymer-ceramic interaction influenced the
conductivity of the electrolytes [41]. In another work, Mao et al. utilized the solvent casting technique
to design a PVDF-LATP composite electrolyte for application in solid-state lithium ion batteries.
Enhanced electrochemical features have been previously displayed by the PVDF-LATP composite
electrolyte [42]. The application of PAN-LATP composites as separators for lithium ion batteries has
been studied by Zhang et al. They prepared PAN-based membranes with different concentrations of
LATP, i.e., 5, 10, and 15 wt%. They observed an enhancement in the electrochemical properties of the
coin cell, with a separator of 15 wt% PAN-LATP showing the best features [43]. As the 15 wt% sample
displayed superior properties, it will be interesting to study how a higher concentration of LATP
affects PAN–LATP membranes (PL membranes). Hence, in this work, an electrospinning technique
was employed to prepare PL membranes with higher concentrations of LATP (i.e., 30 and 50 wt%).
A thorough analysis of these PL membranes was performed through various structural, physical,
and electrochemical characterizations. The synthesized PL membranes exhibit improved porosity and
electrolyte uptake, better thermal stability, and enhanced electrochemical features, which makes them
promising as separators for lithium ion batteries.
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2. Materials and Methods

2.1. Fabrication of PL Membranes

Polyacrylonitrile (MW 20000) was obtained from Polysciences, Inc. (Warrington, PA, USA).
Dimethylformamide (DMF) and N-Butanol were procured from Daejung Chemicals and Metals Co. Ltd.
(Siheung-Si, South Korea). Electrolyte 1M LiPF6 in EC/DMC = 50/50 (v/v) was borrowed from Sigma
Aldrich (St. Louis, MO, United States).

LATP was synthesized using a simple sol-gel method, as reported earlier by one of the authors [44].
For the fabrication of the PL membranes, first a 6 wt% PAN solution was prepared using DMF as the
solvent. To this solution, different wt%s of LATP (30 and 50 wt%) were incorporated and allowed to
stir at 60 ◦C until the LATP became completely soluble in the PAN matrix, followed by ultrasonication
to prepare a homogeneous solution for electrospinning. Adopting the same procedure, PL membranes
with 0 and LATP 10 wt% were prepared to report a complete trend of the PL membranes with various
characteristics. A 10 mL volume of the prepared polymeric solution was removed with a syringe with a
bore size 19 needle for electrospinning in a NanoNC electrospinning/spray system containing a rotating
drum collector covered with aluminum foil. The voltage, flow rate, and distance between the needle
and sample collector were 18 kV, 3 mL/h, and 15 cm, respectively. After the electrospinning process was
completed, the sample was peeled from the aluminum foil and cut into spheres of 14 mm in diameter
followed by drying in vacuum oven at 60 ◦C for 24 h to obtain PL membranes with thicknesses varying
from 36 to 45 µm. The samples with different weight % of LATP were denoted as P-L0, P-L10, P-L30,
and P-L50 for 0, 10, 30, and 50 wt%, respectively.

2.2. Characterization of PL Membranes

To study the morphology of the prepared PL membranes, the PL membranes were first coated
with platinum, followed by field emission scattering electron microscopy (FESEM) of the membranes
with a Jeol JSM-7610F (Tokyo, Japan). XRD study was done with RigakuSmartLab 3 (Tokyo, Japan) to
determine the alteration in the crystallinity of the membranes with the incorporation of various weight
% of LATP, whereas the Fourier transform infrared (FT-IR) spectra of the PL membranes was performed
with an Agilent Cary 670. Thermogravimetric analysis of the PL membranes was performed using
SETARAM instrumentation (LABSYS EVO TGA) (Caluire, France) in a nitrogen atmosphere at a scan
rate of 10 ◦C/min to report the thermal stability of the membranes. The N-butanol soak up method
was used to report the variation in porosity of the PL membranes. This method involved measuring
the weight of the membranes before and after soaking them in n-butanol for two hours. After that,
the following formula was employed to calculate the porosity of the PL membranes:

Porosity (%) = (Wwet/ρb)/{(Wwet/ρb) + (Wdry/ρs)} × 100% (1)

where Wwet = weight of membranes after soaking in n- butanol, Wdry = weight of membranes before
soaking in n-butanol, Vdry = Volume of membrane, ρb = Density of n-butanol, and ρs = Density
of separator.

To determine the electrolyte uptake of the PL membranes, the membranes were left in the dissolved
liquid electrolyte, i.e., LiPF6 in EC/DMC, for up to two hours. Then, the initial and final weights of
membranes after electrolyte submersion were determined, which were then used in the following
equation to obtain the electrolyte uptake of the PL membranes:

Electrolyte Uptake (%) = {(Wwet −Wdry)/Wdry} × 100% (2)

where Wwet = weight of membranes after soaking in liquid electrolyte and Wdry = weight of membranes
before soaking in liquid electrolyte.

A Nyquist impedance plot was created with the help of a Zive SP2 Electrochemical workstation
(Seoul, South Korea). First, the membranes were soaked with electrolyte and then kept between



Nanomaterials 2019, 9, 1581 4 of 13

the Swagelok cells for the impedance measurement, which used a frequency range of 1 Hz–1 MHz.
The Nyquist plot provided the bulk resistance with which the ionic conductivity of the membranes
was calculated by employing the following equation:

σ = (1/Rb) × (l/A) (3)

where σ is the ionic conductivity, Rb is the bulk resistance, l is the thickness of membrane, and A is the
area of the membrane.

2.3. Electrochemical Characterization

Charge-discharge studies and the cyclic voltammetry measurements of the membranes were
carried out by preparing coin cells using lithium metal foil, lithium iron phosphate (LiFePO4), and LiPF6

in EC-DMC as the anode, cathode, and electrolyte, respectively. These studies were conducted with
a universal battery tester with a voltage range of 2.5 V to 4.2 V. LiFePO4, PVdF, and super P were
employed with a ratio of 8:1:1 to prepare the LiFePO4 cathode in the presence of N-methyl pyrrolidone
solvent. The active mass loading of the cathode was calculated to be approximately 5 mg/cm2.

3. Results and Discussion

3.1. Morphology and Phase Change of PL Membranes

PL membranes with varied LATP concentrations were prepared employing the facile
electrospinning technique. The fabrication process is shown in Figure 1. Stirring for a long period
of time followed by ultrasonication results in better homogeneity of the PL membranes. To observe
the change in the morphology of the electrospun PL membranes with different amount of LATP,
FESEM microscopy of the PL membranes was carried out. Figure 2 displays the FESEM micrograph of
the PL membranes. The usage of the electrospinning technique assists in the formation of well aligned
fibrous PL membranes, as indicated in the FESEM images. The formation of fibrous PL membranes
gives rise to an improved porosity, which is shown in Table 1. The diameters of the pristine PAN
fibrous membrane are found to be in the 130–260 nm range. With the incorporation of LATP particles
into the PAN matrix, the polymer solution becomes more viscous than the pristine PAN solution,
which results in the increase in the fiber diameters of the electrospun PL membranes. A similar increase
in the fiber diameters of a P(VdF-TrFE) membrane from the introduction of Al2O3 nanoparticles has
also been previously reported [45]. An increase in the viscosity with the addition of LATP particles
is a major reason that it was not possible to fabricate PL membranes with higher than 50 wt% LATP.
In P-L50 itself there is large amount of variation in the fiber diameters, as seen in Figure 2d, due to a
greater accumulation of LATP particles, which leads the of P-L50 membrane demonstrating inferior
properties when compared to P-L30 (Table 1). To report the successful inclusion of LATP ceramic
particles within the PAN polymer matrix, EDS of the PL membranes was also performed using the
FESEM. The presence of titanium and aluminum are seen in the EDS of the PL membranes (Figure S1),
indicating fruitful incorporation of the LATP particles. The virgin PAN membrane displays only
carbon and nitrogen peaks due to the nitrile group, whereas the platinum peaks in each of the PL
membranes are the result of the platinum coating of the PL membranes prior to FESEM analysis.
To have a clearer picture of presence of ceramic particles in PAN matrix, elemental mapping of P-L30
has been done and displayed in Figure S2. It displays all the components of PAN and LATP except the
lighter element lithium.
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Figure 1. Preparation process of polyacrylonitrile (PAN)–lithium aluminum titanium phosphate (LATP)
membranes (PL membranes).

Figure 2. Field emission scattering electron microscopy (FESEM) of (a) P-L0; (b) P-L10; (c) P-L30;
and (d) P-L50.

Table 1. Porosity, electrolyte uptake, and ionic conductivity values of PL membranes.

Sample Porosity (%) Electrolyte Uptake (%) Ionic Conductivity (mS/cm)

P-L0 66.7 325 0.22
P-L10 83.3 525 1.4
P-L30 90 600 1.7
P-L50 76 400 0.89

Furthermore, XRD and FT-IR were carried out to demonstrate the interaction between the two
moieties that constitute the PL membranes viz. PAN and LATP. The XRD plot shown in Figure 3a
displays a characteristic peak at approximately 17◦ for a pristine PAN membrane [46]. Due to the
crystalline characteristics of LATP, characteristic crystalline peaks of LATP start to appear alongside
the peak of the pristine PAN membrane with the increase of the LATP weight %, indicating the
efficacious insertion of LATP particles inside the PAN matrix. The increase in peaks upon the addition
of LATP denotes the gradual transition from the polymeric to ceramic phase. P-L50 displays more
crystalline LATP peaks when compared to other membranes due to presence of a higher amount of
LATP. The high crystallinity of P-L50 leads to its poor electrochemical performance when compared
to the P-L30 membrane, as described in Figure 5. The fine amalgamation of different moieties in the
separator is very important for the electrochemical performance of the separators. FT-IR is a useful
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tool for demonstrating the mixing of PAN and LATP through the changes in the functional group
peaks. Figure 3b shows the FT-IR of the PL membranes. The characteristic nitrile group peak for
PAN is observed around 2240 cm−1, and the -CH2 stretching and bending peaks are observed around
2900 and 1400 cm−1, respectively. A decrease in the intensity of these peaks in the PL membranes
with addition of LATP particles demonstrates the good mixing of the LATP particles within the PAN
matrix. Recently, Lei et al. observed a similar type of reduction in the intensities of the FT-IR peaks
of PVDF-based membranes when LATP ceramic particles were introduced into them, and ascribed
it to the alteration of the PVDF bonds due to complexation between the ceramic LATP particles and
PVDF [47].

Figure 3. (a) XRD and (b) Fourier transform infrared (FT-IR) spectra of PL membranes.

3.2. Porosity, Electrolyte Uptake, Thermal Stability, and Ionic Conductivity of PL Membranes

Porosity is a vital criterion for battery separators, as the ability to absorb the liquid electrolyte
efficiently eventually assists in achieving better electrochemical features [11]. The porosity of the PL
membranes is shown in Figure 4a. The pure PAN membrane displays a porosity of approximately 67%.
With the addition of LATP particles, the porosity of the PL membranes increases, as shown in Table 1.
The enhancement in porosity with the addition of LATP particles can be ascribed to the increased fiber
diameters [35]. The highest porosity is observed using the P-L30 membrane, i.e., 90%, after which a
reduction in porosity is observed for the P-L50 membrane. This can be ascribed to the greater disparity
in the fiber diameters in P-L50, as evident from the FESEM results. The improved porosity of the
membranes results in a better ability to retain the electrolyte and hence a superior electrochemical
performance [48].

Figure 4. (a) Porosity and electrolyte uptake; (b) Thermogravimetric Analysis (TGA); and (c) Nyquist
impedance plot of PL membranes.
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All the PL membranes have higher porosity than that of separators (42%) employed for commercial
lithium ion batteries. The electrospinning process used for PL membrane preparation in this work
results in better fibrous structures with interconnected networks that in turn result in the improved
porosity of the PL membranes [49]. The porosities of some reported PAN-based membranes are shown
in Table 2. It is clearly visible from Table 2 that the porosity of the P-L30 membrane is the highest
when compared to previously reported PAN-based membranes. The improved porosity leads to better
electrochemical characteristics of the membrane [50]. The enhanced porosity is vital for the application
of the membrane as a separator for lithium ion batteries, but has an adverse effect on the mechanical
strength of the membranes [10,51]. The extreme stress experienced by the PL membranes was found to
be approximately 10 MPa, i.e., for P-L30, as shown in Figure S3. When compared to commercialized
polyethylene membranes, the tensile strength is lower but the membrane still has enough mechanical
sturdiness to be employed as a separator for lithium ion batteries.

The electrolyte uptake heavily relies on the porosity, because a higher porosity enhances the
interfacial contact between the electrolyte and the separator [52]. Hence, the electrolyte uptake values
for PL membranes show a trend similar to the porosity trend viz. P-L0 < P-L10 < P-L30 > P-L50.
Table 1 displays the electrolyte uptake values of the PL membranes. As compared to the pristine
PAN membrane, P-L10 with 10 wt% LATP shows better electrolyte uptake, which increases further
with P-L30, giving a maximum electrolyte uptake value of 600%. The enhanced electrolyte uptake
and porosity of the P-L30 membrane improves the lithium insertion and extraction during the
charge-discharge cycle and hence results in better cyclic stability [50]. However, increasing the LATP
concentration to 50 wt% leads to a reduction in the electrolyte uptake owing to a greater aggregation of
LATP in the polymer matrix. Recently, Thomas et al. described similar electrolyte uptake behavior in
which, with an increase in the amount of Al2O3, the electrolyte uptake of a P(VdF-TrFE) membrane
increases but, in case of an even higher quantity of Al2O3, the electrolyte uptake values decreased [45].

Table 2. Porosity of PAN-based membranes.

PAN Based Separator Works Porosity (%) Reference

Electrospun PAN membranes 68 [53]
SiO2/PAN 77 [54]

Lignin/PAN 74 [35]
PAN/PI 87 [50]

PAN-LATP (P-L30) 90 This Work

Another major concern for separators is thermal stability. The safety of the battery depends on
the improved thermal stability of the separator. Highly thermally stable separators can resist high
temperatures and can avert shrinkage at elevated temperatures, which impacts the performance of
the lithium ion battery. The thermal stability of the PL membranes was investigated through the
TGA measurements depicted in Figure 4b, in which the samples were exposed to a temperature
range starting from room temperature to 800 ◦C at a scan rate of 10 ◦C/min. A major weight loss
occurs between 290 ◦C and 300 ◦C due to the melting of the polymer host, i.e., PAN, after which
no major weight loss occurs, and only the membrane decomposes. Still, after 800 ◦C, the residual
weight percents of the PL membranes are 16%, 59%, 63%, and 35% for P-L0, P-L10, P-L30, and P-L50,
respectively, whereas a reduction in weight of more than 90% is observed in the case of commercially
used polyethylene and polypropylene separators by 600 ◦C [55,56]. The enhanced residual weight %
of PL membranes compared to commercial polypropylene separator and pristine PAN membrane,
i.e., P-L0, can be ascribed to the fine thermal properties of the added LATP particles [47]. As is evident,
the P-L30 membrane is more thermally stable when compared to the other samples, indicating that the
P-L30 membrane is the best sample from the lot, which is also well corroborated by the porosity and
electrolyte uptake results. Additionally, digital images of the celgard separator and P-L30 membrane
are depicted in Figure S4 before and after heat treatment at 170 ◦C for 1 h. After 1 h, the celgard
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separator was completely melted down, whereas in case of P-L30 the color changed from white to
yellow but there was little thermal shrinkage (~14%) of P-L30 membrane, indicating the enhanced
thermal stability of PL membrane compared to commercial celgard separator.

Figure 4c shows the Nyquist impedance plots of the PL membranes soaked in liquid electrolyte,
i.e., LiPF6 in EC-DMC. The point at which the curves of the PL membranes touch the real impedance axis
is considered to be the bulk resistance, Rb, of the membranes. Taking Rb, the ionic conductivity of the
membranes was determined using Equation (3). The calculated ionic conductivity values are listed in
Table 1. The P-L0 membrane, i.e., the membrane without LATP, demonstrated an ionic conductivity of
0.22 mS/cm, but increases in ionic conductivity values have been observed in the incorporation of LATP
into the membrane, which can be ascribed to the higher ionic conductivity of the LATP particles [40,43].
The ionic conductivity values of P-L10, P-L30, and P-L50 are 1.4 mS/cm, 1.7 mS/cm, and 0.89 mS/cm,
respectively. The enhanced electrolyte uptake and porosity of the P-L30 membrane improves its ionic
conductivity above all the other PL membranes [57,58]. The improved ionic conductivity of P-L30
membrane is further corroborated through the cyclic voltammetry measurements (Figure S5), in which
the difference between the anodic and cathodic peak is found to be the lowest when using the P-L30
membrane (i.e., 293 mV), indicating high lithium ion transportation in the P-L30 case. More aggregation
of ceramic particles gives rise to less electrolyte uptake of P-L50, which leads to display of low ionic
conductivity of P-L50 compared to P-L10 and P-L30.

3.3. Electrochemical Investigation of PL Membranes

To test the efficiency of the PL membranes for use in a lithium ion battery, the PL membranes were
assembled in coin cells with a lithium metal anode and a LIFePO4 cathode, using LiPF6 in EC-DMC
as the liquid electrolyte. The initial charge–discharge profiles of the cells with PL membranes are
displayed in Figure 5a. It can be observed that cells with a pristine PAN membrane without any LATP
have a discharge capacity of approximately 134 mAh/g at 0.5C rate, which improves with the inclusion
of LATP. A 30 wt% inclusion shows the highest discharge capacity at 158 mAh/g. The elevated ionic
conductivity of the P-L30 membrane results in the improved charge–discharge behavior of the coin cell
with the P-L30 membrane and hence overall results in the improved capacity of the coin cell [59]. Due to
a reduction in porosity and electrolyte uptake, the coin cell with PL membrane with 50 wt% LATP shows
a reduced capacity when compared to the coin cell with a P-L30 membrane. The charge–discharge
curves of the Celgard separator at 0.5C rate are also included with the charge–discharge curves PL
membranes, and it can be seen that there is very little difference in the specific capacity value between
the coin cells with a Celgard separator and with only a PAN membrane, but the capacity of a coin
cell with the Celgard separator is much lower when compared to coin cells with LATP containing PL
membranes. The enhanced capacity of the PL membranes can be ascribed to the better electrolyte
retaining ability, which comes from their fibrous structure. This result demonstrates that PL membranes
containing LATP could be a better option than commercial separators.

Figure 5b shows the rate capability of the PL membranes by varying the C-rate from 0.5C to
4C. Due to the lithium insertion/extraction mechanism of the LIFePO4 cathode, a reduction in the
discharge capacities of the PL membranes is observed as the C-Rate increases [60]. Still, the P-L30
membrane maintains 56% of its initial capacity at a rate of 4C, whereas the capacity retention of P-L0,
P-L10, and P-L50 is 26%, 49%, and 39%, respectively. This indicates that the high electrolyte uptake of
the P-L30 membrane contributes to efficient lithium ion intercalation and deintercalation, even at a rate
of 4C. All the PL membranes display efficacious reversibility, as the capacity shows little change when
the rate returns from 4C to a smaller C rate, i.e., 0.5C. The greater reversibility of the PL membranes
can be ascribed to the homogeneous mixing of the LATP within the polymer matrix, as evident from
the FTIR studies [61].
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Figure 5. (a) Initial charge-discharge curve with 0.5C rate of PL membranes, (b) rate capability of PL
membranes, and (c) cyclic stability and efficiency of P-L30.

Since the coin cell with the P-L30 membrane displays the highest discharge capacity, the long-term
stability of the P-L30 membrane for use in a lithium ion battery was tested. This was performed by
measuring the cycling performance of P-L30 membrane containing coin cell at a 0.5C rate for 200 cycles,
shown in Figure 5c. It was found that even after undergoing 200 charge-discharge cycles, the coin
cell using the P-L30 membrane retained 87% of its initial discharge capacity. The enhanced cycling
stability of the coin cell with the PL-30 membrane can be attributed to higher porosity of the P-L30
membrane, which restricts the evolution of lithium dendrites during repeated cycling [62]. Further, the
enhanced electrolyte uptake and increased ionic conductivity also plays a crucial role in the cycling
stability of the P-L30 membrane. Figure S6 displays the FESEM image of the P-L30 membrane after
undergoing 200 cycles of charge and discharge. Even after 200 cycles, there is no major changes in the
fiber diameters; only deposition of particles was observed between the fibers, which may have been due
to the LFP cathode. Such type of particle deposit was also observed by Lee et al. in the PE separators
after undergoing 100 cycles of charge and discharge [63]. The coulombic efficiency changes of the coin
cell containing the P-L30 membrane are also displayed in Figure 5c. The initial charge–discharge cycle
at a rate of 0.5C shows a coulombic efficiency of 99.93%, and after 200 cycles, it still maintains a high
coulombic efficiency of 96.5%, indicating the efficacy of using the P-L30 membrane as a lithium ion
battery separator.

4. Conclusions

An electrospinning procedure has been employed to prepare PAN-based membranes with high
concentrations of LATP particles, i.e., 30 and 50 wt%. To have a complete variation trend demonstrating
different properties, membranes with 0 and 10 wt% were also prepared. The FESEM results showed
that the pure PAN membrane was a well-aligned fibrous membrane, but upon increasing the LATP
concentration, irregularities in the fiber diameters were noticed. XRD and FT-IR measurements showed
the fine interaction between the PAN and LATP particles. Due to a higher porosity, the P-L30
membrane displayed improved characteristics such as better electrolyte uptake, greater thermal
stability, and an augmented ionic conductivity of 1.7 mS/cm, results that were superior to those of the
other PL membranes tested. LiFePO4/Li-based coin cells prepared with a P-L30 membrane exhibited



Nanomaterials 2019, 9, 1581 10 of 13

an enhanced discharge capacity of 158 mAh/g at 0.5C rate and displayed good capacity retention with
a higher C-rate. Furthermore, only a 13% reduction in the capacity was observed while cycling the coin
cell with the P-L30 membrane for 200 cycles at a 0.5C rate, and an improved coulombic efficiency of
96.5% was retained after charging and discharging the P-L30-based coin cell for 200 cycles at a rate of
0.5C. Hence, the prepared PL membranes are promising candidates for lithium ion battery applications.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/11/1581/s1,
Figure S1: EDS of PL Membranes; Figure S2: Elemental Mapping of P-L30; Figure S3: Stress-Strain curves of PL
membranes; Figure S4: Heat treatment at 170 ◦C of (a) P-L30 (b) celgard separator (Above — Before Heat treatment;
Below—After Heat treatment); Figure S5: Cyclic Voltammetry of PL membranes; Figure S6: FESEM image of
P-L30 membrane after 200 cycles of Charge and discharge.
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