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Abstract: This paper presents a plasma display device (PDD) based on laser-induced graphene
nanoribbons (LIGNs), which were directly fabricated on polyimide sheets. Superior field electron
emission (FEE) characteristics, viz. a low turn-on field of 0.44 V/µm and a large field enhancement
factor of 4578, were achieved for the LIGNs. Utilizing LIGNs as a cathode in a PDD showed
excellent plasma illumination characteristics with a prolonged plasma lifetime stability. Moreover,
the LIGN cathodes were directly laser-patternable. Such superior plasma illumination performance
of LIGN-based PDDs has the potential to make a significant impact on display technology.
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1. Introduction

Displays are an essential interface in machine-based communication. There have been major
developments in display technology, with the potential to enable television, handheld computers,
and mobile phones to be more functional and user-friendly [1–4]. In this regard, plasma display
devices (PDDs) are very attractive for display technology. The advantages of plasma display are
sharper image, wider screen option, better contrast ratios, high-definition quality, less visible motion
blurs, superior uniformity, and wider viewing angle than cathode ray display and liquid crystal
displays [3–5]. However, their relatively high operating voltage and poor plasma stability have limited
their widespread use [6,7]. To mitigate these issues, several studies have been conducted to find a
suitable cathode material, which possesses a high proficiency in producing secondary electrons through
plasma ion bombardment for a longer duration. Theoretical works from Venkatraman et al. [7,8] advise
that a material with outstanding field electron emission (FEE) properties is appropriate as a cathode in
improving the characteristics of a PDD.

Graphene, two-dimensional hexagonally arrayed carbon atoms, is considered a viable electron
emitter for FEE applications as the sharp edges of individual graphene sheets are high-density sources
of individual field emission sites [9]. However, a requirement for the graphene utilized in field electron
emission devices is that the material should be vertically aligned/protrude from the polymer substrate,
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providing more individual field emission sites, as flat graphene sheets lack sharp edges and require a
high voltage to turn on the FEE process [10]. Several methods for synthesizing graphene nanostructures
on polymer substrates, such as spin-casting, electrophoresis, self-assembly, thermal welding, and
filtering, have been developed and have employed the obtained nanostructures as efficient field
emitters [11–16]. A cost-effective process of synthesizing graphene nanostructures on polymers using
cheap precursors is needed for the industrial production of display devices.

In this work, such a cost-effective method is reported for the synthesis of graphene nanoribbons
using the laser induction process on commercially accessible polyimide sheets. The obtained graphene
nanoribbons were successively utilized as a cathode for fabricating field emission and plasma display
devices. The detailed morphological and structural features of the developed material were investigated.
Superior plasma illumination properties with low breakdown field and prolonged plasma stability
were achieved for PDDs utilizing graphene nanoribbons as cathodes. The better plasma illumination
properties for the PDDs were correlated with the FEE properties of the graphene nanoribbons.

2. Materials and Methods

Laser induction on polyimide sheets, schematically shown in Figure 1a, was performed using
Universal Laser Systems VLS2.30 equipped with a wavelength of 10.6 µm pulsed CO2 laser system
(25 W). Polyimide sheets with a thickness of 0.125 mm (Cat. No: IM301450) were purchased from
Goodfellow, Huntingdon, England. A scan rate of 20 cm/s, a laser duty cycle of 30%, and an
image density of 1000 ppi were used to obtain a black layer of laser-induced graphene nanoribbons
(LIGNs) on the polyimide sheets [17,18]. The grown LIGNs were characterized using field emission
scanning electron microscopy (FESEM; SU5000 (Hitachi High-Technologies Corporation, Tokyo,
Japan)), transmission electron microscopy (TEM; Jeol 2011 at 200 kV accelerating voltage (Jeol Taiwan
Semiconductors Limited, Hsinchu, Taiwan)), Raman spectroscopy (Renishaw confocal microscope;
λ = 532 nm, Paris, France), X-ray photoelectron (PHI 6000; Al Kα radiation with an energy of 1486.6 eV
and an energy resolution of 0.47 eV, Physical Electronics, Chanhassen, MN, USA) spectroscopy, and
X-ray diffraction (XRD; Bruker D8-discover diffractometer fitted with global mirror (Cu Kα radiation
source, λ = 1.540 Å); Coventry, UK). The TEM samples were prepared by removing the LIGN films
from the polyimide sheets, followed by ultrasonication in absolute ethanol and coating the TEM grids
with a few microliters of the solution.
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Figure 1. (a) Schematic illustration showing the fabrication process of the laser-induced graphene 
nanoribbons (LIGNs), (b) plan-view field emission scanning electron microscopy (FESEM) 
micrograph of the LIGNs, (c) high-resolution FESEM micrograph of the LIGNs. 

To estimate the ability of the LIGNs as field emitters, the distance between a Mo rod with a 
diameter of 3 mm (anode) and the LIGNs (cathode; 1 cm × 1 cm) was set to 640 μm, and the current–
voltage characteristics were measured using a Keithley 6517B electrometer (Keithley Instruments, 
Inc., OH, USA) inside a vacuum chamber around a pressure of 1.5 × 10−8 Torr. To examine the plasma 
illumination (PI) characteristics of a plasma display device, a cylindrical-type plasma device was 
fabricated. The cathode was the LIGNs, and an indium tin oxide (ITO)-coated glass was used as an 
anode. The separation between the cathode and anode was fixed by a 1.0 mm thick 

Figure 1. (a) Schematic illustration showing the fabrication process of the laser-induced graphene
nanoribbons (LIGNs), (b) plan-view field emission scanning electron microscopy (FESEM) micrograph
of the LIGNs, (c) high-resolution FESEM micrograph of the LIGNs.

To estimate the ability of the LIGNs as field emitters, the distance between a Mo rod with a diameter
of 3 mm (anode) and the LIGNs (cathode; 1 cm × 1 cm) was set to 640 µm, and the current–voltage
characteristics were measured using a Keithley 6517B electrometer (Keithley Instruments, Inc., OH, USA)
inside a vacuum chamber around a pressure of 1.5 × 10−8 Torr. To examine the plasma illumination (PI)
characteristics of a plasma display device, a cylindrical-type plasma device was fabricated. The cathode
was the LIGNs, and an indium tin oxide (ITO)-coated glass was used as an anode. The separation
between the cathode and anode was fixed by a 1.0 mm thick polytetrafluoroethylene (PTFE) spacer.
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A cylindrical cavity with a diameter of 8.0 mm was formed in the PTFE spacer. The whole device
was placed in a vacuum chamber, and a pressure of 0.01 mTorr was maintained. Argon gas at a
flow rate of 10 sccm was passed into the chamber during the measurements. A DC pulsed voltage
(HPP-20KA01KAT B; continuous 325–1000 VDC; Delta Electronics Inc., Taiwan, China) was used to
ignite the plasma under 10 Torr, and a Keithley 2410 electrometer was employed to measure the plasma
current density (JPI)–applied field (E) characteristics.

3. Results and Discussion

Imaging of the LIGN surface using FESEM (Figure 1b) displayed the three-dimensional nature
of foam-like graphene. The high-magnified SEM micrograph (Figure 1c) revealed that the graphene
was composed of interconnected nanoribbons. Additional FESEM micrographs (given in Figure S1
of the Supplementary Materials) indicated a homogenous morphology of the nanoribbons in the
graphene film, and the average width of the graphene nanoribbons was ~100 nm. The thickness of
the LIGNs, estimated from cross-sectional SEM image (Figure 2a), was 120 µm. Moreover, sharp
edges of nanoribbons were observed, which were spiked-out from the surface of the substrate.
The microstructure of the LIGNs was revealed by TEM. The TEM micrographs (Figure 2b) disclosed
that the nanoribbons with the width of ~100–250 nm contained nanoscale ripples and wrinkles. From
the high-resolution TEM micrograph (Figure 2c), it could be seen that the LIGNs displayed a few-layered
graphene structure with a d-spacing of 0.34 nm, representing (002) planes, with numerous graphene
edges. Moreover, the Fourier transformed diffractogram corresponding to the whole high-resolution
TEM micrograph (displayed as an inset in Figure 2c) revealed a donut-shaped strong diffuse ring,
indicating the presence of graphene phase in the material. The nanoscale ripples and wrinkles observed
in TEM were formed due to the thermal expansion that happened via laser irradiation. The formation
of graphene by the laser was like a photothermal process [18] as a long wavelength and long pulse
laser was used in this study.
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Figure 2. (a) Cross-sectional view FESEM micrograph of laser-induced graphene nanoribbons (LIGNs).
(b) TEM micrograph and (c) high-resolution TEM (HRTEM) structural image of the LIGNs. The inset
in (c) shows the Fourier transformed image corresponding to the whole structural image in (c).

The structural quality of the LIGNs was evaluated by Raman spectroscopy. The Raman spectrum
of the LIGN, shown in Figure 3a, was composed of three major peaks: the typical D, G, and 2D [17,18].
The presence of a small D-peak at 1342.7 cm−1 was related to the sp3 centers in the LIGN due to the
structural edge defects. The 2D peak at 2680 cm−1 was fitted with only one Lorentz peak of width
61.3 cm−1, similar to monolayer graphene [19]. The ID/IG ratio of 0.34 specified a high degree of sp2

network in the LIGNs, and the average I2D/IG ratio of 0.53 indicated the presence of multilayered
graphene, which is consistent with the HRTEM (cf. Figure 1b,c). Moreover, the XPS spectrum of the
LIGNs (Figure S2a of the Supplementary Materials) showed a high carbon peak of 96.3 at.% and a
small oxygen peak of 3.7 at.%. The XRD spectrum (Figure 3b) showed a peak at 25.96◦, representing an
interlayer distance of 0.34 nm of (002) planes in the LIGN, indicating a high degree of crystallinity [17,18].
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The slight increase in the interlayer spacing represented the existence of defects in the graphene sheets.
A peak at 43.1◦ corresponded to (100) planes, which was attributed to the in-plane structure of the
graphene sheet. Taken together, the characterization studies confirmed that the fabricated material
was indeed LIGNs.
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Figure 4a shows the FEE current density (Je) versus electric field (E) characteristics for the LIGNs,
with the inset of Figure 4a presenting a schematic of the FEE measurement set-up of the LIGNs. The
turn-on field (E0) was described as the electric field essential to attain a current density of 10 µA/cm2.
The LIGNs exhibited a low E0 value of 0.44 V/µm, with a high Je value of 49.7 mA/cm2 at an applied
field of 2.33 V/µm. Fowler–Nordheim (F–N) theory was used to explain the FEE characteristics of the
materials [20].

Je =

(
Aβ2E2

ϕ

)
exp

−B×ϕ
3
2

β× E

 (1)

where A = 1.54 × 10−6 A eV/V2 and B = 6.83 × 109 eV−3/2 V/m, ϕ is the work function, and β is the
field-enhancement factor of the emitting materials. The slope (m) of the F–N plot (inset of Figure 3b)
provides the corresponding β value using the formula β = [−6.8 × 103

× ϕ3/2]/m. In order to calculate
the β value of the LIGNs, an average ϕ value of 3.614 eV was determined using Kelvin probe force
microscopy (KPFM) (Figure S3 of the Supplementary Materials), which was lower than the reported ϕ
value of graphene nanostructures [21–25]. Using this ϕ value, a β value of 4578 was calculated for the
LIGNs. The FEE properties of the LIGNs were excellent and comparable with those of other reported
field emitters (Table S1 of the Supplementary Materials). Generally, LIGNs possess prominent, vertically
aligned sharp-edged graphene materials (cf. Figure 2a), resulting in a high aspect ratio [17,18,26–37]
and therefore excellent FEE performance. The Je versus time curve, measured at an applied field of
0.75 V/µm (Figure 4b), showed that the FEE current density was very stable for a period of 160 min.
This confirms that LIGNs have a high FEE current stability, which is a beneficial characteristic for
device applications.
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Figure 4. (a) Field electron emission properties (current density–applied field (Je–E) curves) measured
in a high vacuum environment for LIGNs, with the inset showing the schematic of the FEE
measurement. (b) Lifetime stability measurements (Je–time curves) for LIGNs, with the inset showing
the Fowler–Nordheim (F–N) plots corresponding to the J–E curves shown in (a).

The superior FEE characteristics of the LIGNs play a beneficial role in plasma displays. Figure 5a
displays a schematic illustration of the PI measurements, and Figure S4 of the Supplementary Materials
shows a photograph of the homemade PI instrument. The PI images were obtained for different applied
voltages through the anode by a USB microscope, and the PI behavior of the plasma display device
was characterized. The series of PI images, shown in the inset of Figure 5b, revealed that the brightness
of the plasma increased with the increase in applied voltage. The LIGN-based plasma display device
needed a low breakdown voltage of 260 V (breakdown field (Ebk) of 0.26 V/µm) to trigger the plasma.
A JPI value of 6.2 mA/cm2 was also achieved for the LIGN-based plasma display device at an applied
field of 0.40 V/µm. Furthermore, the stability of the LIGNs as a cathode in a plasma display device
was evaluated by applying a contact voltage of 300 V (a JPI value of 5.3 mA/cm2). Interestingly, the
LIGNs showed a stable plasma current over 25 min (1530 s) (inset of Figure 5c), and the intensity of the
plasma also remained stable after 25 min (plasma images in the inset of Figure 5c), demonstrating the
high robustness of the LIGNs.

Furthermore, LIGN-based patterned lines and circles were designed on polyimide substrates
(shown in Figure 6aI,bI, respectively) and utilized as cathodes in plasma display devices. The plasma
images at an applied voltage of 350 V (a JPI value of 5.88 mA/cm2) (shown in Figure 6aII,bII, respectively)
revealed the uniform lighting pattern of the LIGN-based plasma display devices. These results
illustrate the overwhelming advantage of the LIGN materials, viz. they are directly laser-patternable, a
characteristic that has not been achievable when using other kinds of materials as cathodes in plasma
devices. Consequently, the benefit of the superior FEE properties as emitters reveals high robustness
and high PI intensity for these materials, rendering LIGNs marvelous potential for application as
plasma display device cathodes.
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4. Conclusions

To summarize, we have reported on a high-performance plasma display device with a LIGN
cathode architecture via a cost-effective method of direct laser scribing of polyimide sheets. The Raman,
XRD, and TEM studies confirmed that the LIGNs contained multilayered graphene layers. The excellent
FEE characteristics demonstrated the potential to use LIGNs as a cathode for plasma display devices.
The LIGN-based plasma display device showed a low breakdown field of 0.26 V/µm, a high plasma
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current density of 6.2 mA/cm2, and a prolonged plasma lifetime stability of 25 min at an operating
current density of 5.3 mA/cm2 with a stable plasma intensity. Moreover, the LIGN cathodes were found
to be directly laser-patternable. Considering the simple and direct way of creating laser-fabricated
LIGN-based plasma display devices, this work sets the basis for high-brightness display devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/10/1493/s1,
Figure S1: FESEM micrographs of the LIGNs. Figure S2: (a) The X-ray photoelectron spectroscopic (PHI 6000; Al
Kα radiation with an energy of 1486.6 eV and an energy resolution of 0.47 eV) survey spectrum shows a dominant
carbon peak and a small oxygen peak of 96.3 at.% and 3.7 at.%, respectively, along with (b) the C1s and (c) O1s
XPS spectra of the LIGNs. Figure S3: (a) Surface topography and (b) work function map of the LIGNs. Figure S4:
Photograph of the homemade PI instrument.
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