Enhanced kinetic removal of ciprofloxacin onto metal-organic frameworks by sonication, process optimization and metal leaching study

Synthesis of MOFs:

UIO-66: 0.2332 g of ZrCl₄ and 0.161 g terephthalic acid were dissolved in 50 mL DMF and stirred to obtain a clear solution. The solution then transferred to a 100 mL sealed Teflon autoclave and heated in an oven at 120°C for 48 hours.

Cubic ZIF-8: In turn, 0.594 g Zn(NO₃)₂·6H₂O and 0.328 g (Hmim) added to 3 mL of distillated water and 3.76 g of NH₃ solution, separately. The zinc nitrate solution then added to Hmin solution and mixing continued for 10 minutes.

Dodecahedral ZIF-8: 0.863 g Zn(OAc)² and 11.350 g Hmim dissolved in 8 mL and 80 mL distilled water, respectively. After mixing the two solutions stirring continued for further 4 hours.

Leaf ZIF-8: 0.59 g of Zn(NO₃)₂·6H₂O and 1.3 g of Hmim added to 40 mL deionized water, separately. After the solution turn to clear, the two solutions were mixed for 4 h.

Cuboid ZIF-8: 1.3 g of Hmim dissolved in 40 ml distilled water containing 200 mg of Polyvinylpyrrolidone (PVP). Second solution was prepared by dissolving 0.595 g of Zn(NO₃)₂·6H₂O in distilled water. The two solutions then mixed for 30 min.

ZIF-67 with Granular and dodecahedron morphologies were prepared using CoSO₄, $Co(OAC)_2$, $CoCl_2$ and $Co(NO_3)_2$ salts, respectively. 1.642 g of Hmim and 1 mmol of cobalt salts were dissolved separately in 10 ml of deionized water. The solutions mixed and stirred for 30 min.

Model formula	df	Sum Sq.	Mean Sq.	F value	Pr(>F)
First-order response	4	2617.2	654.3	60.526	0.00
Second order response	6	272	45.34	4.1941	0.01
pure quadratic response	4	3444.3	861.08	79.6545	0.00
Residuals	14	151.30	10.81		
Lack of fit (LOF)	10	136.1	13.61	3.57	0.1155
Pure error	4	15.2	3.81		
Multiple R-squared: 0.9767, Adjusted R-squared: 0.9533					
F-statistic: 41.85 on 14 and 14 DF, p-value: 5.718e-09					

Table S1. Adequacy of the model tested.

Source	Sum of	df	Mean	F	p-value
	Squares		Square	Value	Prob > F
Model	6333.528	14	452.3949	41.84907	< 0.0001
X1-time	1012.003	1	1012.003	93.61599	< 0.0001
X2-MOF	140.0833	1	140.0833	12.95849	0.0029
X3-ph	977.4075	1	977.4075	90.41568	< 0.0001
X4-CIP	487.6875	1	487.6875	45.11383	< 0.0001
X1.X2	36	1	36	3.330202	0.0894
X1.X3	200.2225	1	200.2225	18.52171	0.0007
X1.X4	10.5625	1	10.5625	0.977091	0.3397
X2.X3	1	1	1	0.092506	0.7655
X2.X4	20.25	1	20.25	1.873239	0.1927
X2.X4	4	1	4	0.370022	0.5527
X1^2	301.5546	1	301.5546	27.89549	0.0001
X2^2	190.4325	1	190.4325	17.61607	0.0009
X3^2	3381.061	1	3381.061	312.7672	< 0.0001
X4^2	266.171	1	266.171	24.62231	0.0002
Residual	151.3422	14	10.81015		
Lack of					
Fit	136.1142	10	13.61142	3.575366	0.1155
Pure	15.228	4	3.807		
Error					
Cor Total	6484.870345	28			
Std. Dev.	3.29	R-Squared		0.9767	
Mean	78.86	Adj R-Squared		0.9533	
C.V. %	4.17	Pred R-Squared		0.8754	
PRESS	807.81	Adeq Precision		24.905	

Table S2. Analysis of variance (ANOVA) for CIP removal by ZIF-67-SO₄.

Isotherm	Equation	Parameters	
Two-parameter models			
Langmuir	$q_e = \frac{Q_0 K_L C_e}{1 + K_L C}$	C _e = adsorbate equilibrium concentration (mg/L)	
	I I KĽCe	q _e = adsorption capacity at equilibrium (mg/g)	
		Qo= monolayer coverage capacity (mg/g)	
		KL= Langmuir isotherm constant (L/mg).	
Freundlich	$q_e = K_f C_e^{1/n}$	K_f = Freundlich isotherm constant(mg ^{1-(1/n)} L ^{1/n} g ⁻¹)	
		n = adsorption intensity	
Jovanovic	$q_e = q_m (1 - e^{K_j C_e})$	K _j = Jovanovic isotherm constant(L/mg)	
		q _m = maximum adsorption capacity(mg/g)	
Temkin	$q_e = \frac{RT}{B} ln(A_T C_e)$	A _T = the Temkin isotherm equilibrium binding constant (L/mg)	
		b_T = the Temkin isotherm constant	
		R = the universal gas constant (8.314 J/mol K)	
		T = the temperature (K)	
		B = the constant related to heat of sorption (J/mol)	
Dubinin-	$q_e = Q_m exp(-K\varepsilon^2)$	K = Dubinin–Radushkevich isotherm constant	
Radushkevi		(mol^2/kJ^2)	
		Q _m = is the theoretical isotherm saturation capacity (mg/g)	
		$\boldsymbol{\varepsilon}$ = is the Polanyi potential	
Three-parameter models			

Table S3. Nonlinear isotherm models and their parameters(24)

Hill	$q_e = \frac{q_{s_H} C_e^{n_H}}{K_D + C_e^{n_H}}$	<pre>q_{sH}= Hill isotherm maximum uptake saturation (mg/L)</pre>
		KD= Hill constant
		n _H = Hill cooperativity coefficient of the binding interaction.
Sips	$q_e = \frac{q_{m_s} K_s C_e^{m_s}}{1 + K_s C_e^{m_s}}$	q_{m_s} = Sips maximum adsorption capacity (mg/g)
	$1 + K_s C_e$	Ks = Sips equilibrium constant (L/mg) ^m s
		ms= Sips model exponent
Koble-	$q_e = \frac{aC_e^n}{1 + bC^n}$	a = Koble-Corrigan parameter($L^{n}mg^{1-n}/g$)
Corrigan	I I DOg	b = Koble-Corrigan parameter(L/mg) ⁿ
		n = Koble-Corrigan parameter
Toth	$q_e = \frac{K_T C_e}{\Gamma_e - T_T T^{1/T_T}}$	K _T = Toth equilibrium constant
	$\left[A_{T}+C_{e}^{T}\right]$	T ₁ = Toth model exponent
Redlich-	$q_e = \frac{K_{RP}C_e}{1 + 2 - C^g}$	K_{RP} = Redlich-Peterson isotherm constant(L/g)
Peterson	I T agpCe	arp=Redlich-Peterson model constant(mg/L) ^{-g}
		g = Redlich-Peterson model exponent
Khan	$q_e = \frac{q_s b_K C_e}{(1 + b_K C_e)^{n_K}}$	bκ= Khan isotherm constant
		q _s = theoretical isotherm saturation capacity(mg/g)
		nĸ= Khan model exponent