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Abstract: Designing and realizing various magnetization textures in magnetic nanostructures are
essential for developing novel magnetic nanodevices in the modern information industry. Among
all these textures, planar transverse domain walls (pTDWs) are the simplest and the most basic,
which make them popular in device physics. In this work, we report the engineering of pTDWs
with arbitrary tilting attitude in biaxial magnetic nanostrips by transverse magnetic field profiles
with uniform orientation but tuneable strength distribution. Both statics and axial-field-driven
dynamics of these pTDWs are analytically investigated. It turns out that, for statics, these pTDWs
are robust against disturbances which are not too abrupt, while for dynamics, it can be tailored to
acquire higher velocity than Walker’s ansatz predicts. These results should provide inspiration for
designing magnetic nanodevices with novel one-dimensional magnetization textures, such as 360◦

walls, or even two-dimensional ones, such as vortices and skyrmions.
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1. Introduction

Artificially prepared magnetic nanostructures have been forming the basic components of
nanodevices in modern information industry for decades [1,2]. Various magnetization textures therein
provide the abundant choices of defining zeros and ones in binary world. Among them, domain
walls (DWs) are the most common ones which separate magnetic domains with interior magnetization
pointing to different directions [3–8]. In magnetic nanostrips with rectangular cross sections, numerical
calculations confirm that there exists a critical cross-section area [9,10]. Below (above) it, transverse
(vortex) walls dominate. For nanodevices based on DW propagation along strip axis with high integral
level, strips are thin enough so that only transverse DWs (TDWs) appear. Their velocity under external
driving factors (magnetic fields, polarized electronic currents, etc.) determines the response time of
nanodevices based on DW propagation. In the past decades, analytical, numerical and experimental
investigations on TDW dynamics have been widely performed [11–27]. However, seeking ways to
further increase TDW velocity, thus, improve the devices’ response performance, is always the pursuit
of both physicists and engineers.

Besides velocity, fine manipulations of DW structure are also essential for improving the device
performance. In the simplest case, a TDW may possess uniform azimuthal distribution and is usually
called a planar TDW (pTDW). Historically the Walker ansatz [11] provides the first example of pTDW,
however its tilting attitude is fully controlled by the driving field or current density (in particular,
lying within easy plane in the absence of external driving factors) thus, can not be freely adjusted.
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In the past decades, several strategies [28–31] have been proposed to suppress or at least postpone
the Walker breakdown thus, makes TDWs preserve traveling-wave mode which has a high mobility
(velocity versus driving field or current density). The nature of all these proposals is to destroy
the two-fold symmetry in the strip cross section, thus, is equivalent to a transverse magnetic field
(TMF). In 2016, the “velocity-enhancement” effect of uniform TMFs (UTMFs) on TDWs in biaxial
nanostrips has been thoroughly investigated [32]. It turns out that UTMFs can considerably boost
TDWs’ propagation meanwhile inevitably leaving a twisting in their azimuthal planes. However for
applications in nanodevices with high density, the twisting is preferred to be avoided to minimize
stochastic fields as much as possible. In 2017, optimized TMF profiles with fixed strength and tuneable
orientation are proposed to realize pTDWs with arbitrary tilting attitude [33]. Dynamical analysis on
these pTDWs reveals that they can propagate along strip axis with higher velocities than those without
TMFs. However, there are several remaining problems: the rigorous analytical pTDW profile (thus,
TMF distribution) is still lacking, the pTDW width can not be fully controlled and the real experimental
setup is challenging.

In this work, we engineer pTDWs with arbitrary tilting attitude in biaxial magnetic nanostrips
by tailoring TMF profiles with uniform orientation but tuneable strength distribution. For statics, the
well-tailored TMF profile manipulates pTDW with arbitrary tilting attitude, clear boundaries and
controllable width. In particular, these pTDWs are robust against disturbances which are not too
abrupt. For axial-field-driven dynamics with TMFs comoving, pTDWs will acquire higher velocity
than Walker’s ansatz predicts.

2. Model and Preparations

We consider a biaxial magnetic nanostrip with rectangular cross section, as depicted in Figure 1.
The z axis is along strip axis, the x axis is in the thickness direction and ey = ez × ex. The magnetic
energy density functional of this strip can be written as

Etot[M, Hext] = −µ0M ·Hext −
k1

2
µ0M2

z +
k2

2
µ0M2

x + J (∇m)2 (1)

in which m ≡ M/Ms with Ms being the saturation magnetization and J is the exchange stiffness.
The magnetostatic energy density has been described by quadratic terms of Mx,y,z via three average
demagnetization factors Dx,y,z [34] and thus, been absorbed into k1,2 as k1 = k0

1 + (Dy − Dz) and k2 =

k0
2 + (Dx − Dy) [17,31,32], where k0

1,2 are the magnetic crystalline anisotropy coefficients. The external
field Hext has two components: the axial driving field H‖ ≡ H1ez and the TMF

H⊥ = H⊥(z, t)
[
cos Φ(z, t)ex + sin Φ(z, t)ey

]
(2)

in which H⊥(z, t) and Φ(z, t) are the TMF strength and orientation, respectively. The time evolution of
M(r, t) is described by the Landau-Lifshitz-Gilbert (LLG) equation [35] as

∂m
∂t

= −γm×Heff + αm× ∂m
∂t

(3)

where α phenomenologically describes magnetic damping strength, γ > 0 is the absolute value of
electron’s gyromagnetic ratio and Heff = − (δEtot/δM) /µ0 is the effective field.

When system temperature is far below Curie point, the saturation magnetization Ms of magnetic
materials can be viewed as constant. Thus M(r, t) is fully described by its polar angle θ(r, t)
and azimuthal angle φ(r, t). In addition, for thin enough nanostrips (where TDWs dominate) the
inhomogeneity in cross section can be ignored thus, make them become quasi one-dimensional
(1D) systems (r → z). Then reasonably one has (∇m)2 ≡ (∇zm)2 = (θ′)2 + sin2 θ(φ′)2 in which a
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prime means spatial derivative to z. After the transition from the global Cartesian coordinate system
(ex, ey, ez) to the local spherical coordinate system (em, eθ , eφ), the effective field Heff reads

Heff = Hm
effem + Hθ

effeθ + Hφ
effeφ (4a)

Hm
eff = H1 cos θ + H⊥(z, t) sin θ cos [Φ⊥(z, t)− φ] + k1Ms −Ms sin2 θ

(
k1 + k2 cos2 φ

)
− 2J

µ0Ms
(θ′2 + sin2 θφ′2)2 (4b)

Hθ
eff = −H1 sin θ + H⊥(z, t) cos θ cos [Φ⊥(z, t)− φ]−Ms sin θ cos θ

(
k1 + k2 cos2 φ

)
+

2J
µ0Ms

(θ′′ − sin θ cos θφ′2) ≡ −B (4c)

Hφ
eff = H⊥(z, t) sin [Φ⊥(z, t)− φ] + k2Ms sin θ sin φ cos φ +

2J
µ0Ms

1
sin θ

(
sin2 θ × φ′

)′
≡ A (4d)

Putting it back into Equation (3), the vectorial LLG equation turns to its scalar counterparts,

(1 + α2)θ̇/γ = A− αB (5a)

(1 + α2) sin θφ̇/γ = B + αA (5b)

or equivalently

θ̇ + α sin θφ̇ = γA (6a)

sin θφ̇− αθ̇ = γB (6b)

where a dot means time derivative. These equations are all what we need for our work is this paper.
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Figure 1. Sketch of biaxial magnetic nanostrip under consideration. (ex, ey, ez) is the global Cartesian
coordinate system in real space: ez is along strip axis, ex is in the thickness direction and ey = ez × ex.
k1(k2) is the total magnetic anisotropy coefficient in easy (hard) axis. (em, eθ , eφ) forms the local
spherical coordinate system associated with the magnetization vector M (blue arrow with magnitude
Ms, polar angle θ and azimuthal angle φ). The total external field has two components: axial driving
field with magnitude H1 and TMF with constant tilting attitude Φ⊥ and tuneable magnitude H⊥(z, t).

3. Results

In this section, we present in details how to engineer pTDWs with arbitrary tilting attitude by
properly tailoring TMF profile along strip axis. As mentioned in Section 1, here we fix the TMF
orientation (thus, Φ⊥(z, t) ≡ Φ0) and allow its strength tuneable along strip axis, which is much
easier to realize in real experiments. Both statics and axial-field-driven dynamics of pTDWs will be
systematically investigated.

3.1. Statics

From the roadmap of field-driven DW motion in nanostrips [17], in the absence of axial driving
fields a TDW will finally evolve into its static configurations (θ̇ = φ̇ = 0) under time-independent
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TMFs (H⊥(z, t) ≡ H⊥(z)). For Equation (6) this means A = B = 0. In the absence of any TMF
(H⊥(z) ≡ 0), the static TDW is a pTDW lying in easy plane with the well-known Walker’s profile [11],

θ(z) = 2 arctan eη
z−z0

∆0 , φ(z) ≡ nπ/2 (7)

where ∆0 ≡
√

2J/(µ0k1M2
s ) is the pTDW width, z0 is the wall center, η = +1(−1) denotes

head-to-head (tail-to-tail) pTDWs and n = +1(−1) is the wall polarity (sign of 〈my〉). However,
if we want to realize a static pTDW with arbitrary tilting attitude, i.e., φ(z) ≡ φd, well-tailored
position-dependent TMF profile must be exerted.

3.1.1. Boundary Condition

As the first step, we need the boundary condition of this pTDW, which means the magnetization
orientation in the two domains at both ends of the strip. Without losing generality, our investigations
are performed for head-to-head (η = +1) walls and 0 < φd < π/2. In the two domains, the orientation
of magnetization should be uniform, meaning that the azimuthal angle satisfies φ(z) ≡ φd, while
the polar angle in the left (right) domain takes the value of θd (π − θd). Meantime, the TMF strength
should be constant (H⊥(z)→ Hd

⊥) in these two domains. Then A = B = 0 becomes

Hd
⊥ sin(φd −Φ0) = k2Ms sin θd sin φd cos φd (8a)

Hd
⊥ cos(Φ0 − φd) = Ms sin θd(k1 + k2 cos2 φd) (8b)

The solution to the above equation set provides the TMF profile in the two domains as

Φ0 = arctan
(

k1

k1 + k2
× tan φd

)
, Hd

⊥ = Hmax
⊥ × sin θd (9)

with
Hmax
⊥ = Ms

√
k2

1 sin2 φd + (k1 + k2)2 cos2 φd (10)

Equation (9) indicates that in both domains, TMF should be farther away from the easy plane
than the magnetization. Meanwhile, the existence condition of the pTDW (θd 6= π/2) requires that
TMF strength in domains has an upper limit

Hd
⊥ < Hmax

⊥ (11)

3.1.2. Static pTDW Profile

Note that we have fixed TMF orientation to be Φ0, therefore in pTDW region A = B = 0 becomes

0 = H⊥(z) sin (Φ0 − φ) + k2Ms sin θ sin φ cos φ +
2J

µ0Ms

1
sin θ

(
sin2 θ × φ′

)′
(12a)

2J
µ0Ms

θ′′ = −H⊥(z) cos θ cos (Φ0 − φ) + Ms sin θ cos θ
(

k1 + k2 cos2 φ
)
+

2J
µ0Ms

sin θ cos θφ′2 (12b)

Since we are considering pTDWs with uniform tilting attitude φ(z) ≡ φd, then the above
equations become

H⊥(z) sin (φd −Φ0) = k2Ms sin θ sin φd cos φd (13a)
2J

µ0Ms
θ′′ = −H⊥(z) cos θ cos (Φ0 − φd) + Ms sin θ cos θ

(
k1 + k2 cos2 φd

)
(13b)

Combing Equations (8a) and (13a), one has

H⊥(z) =
Hd
⊥

sin θd
× sin θ(z) = Hmax

⊥ × sin θ(z) (14)
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Putting it back into Equation (13b) and considering Equation (8b), it turns out that

2J
µ0Ms

θ′′ =
sin θ cos θ

sin θd

[
Ms sin θd(k1 + k2 cos2 φd)− Hd

⊥ cos(Φ0 − φd)
]
= 0 (15)

which means θ(z) is linear in z within pTDW region, i.e.,

θ(z) = C1 + C2 × (z− z0) (16)

where z0 is the pTDW center.
It is worth noting that in nearly all existing literatures, the boundary between “domains” and

“domain walls” in nanostrips is not clear (or abrupt) since θ(z) and φ(z) and their derivatives are
all continuous there. However, Equations (14) to (16) provide us an opportunity to realize a pTDW
with clear boundary and tuneable width, as depicted in Figure 2. In summary, under the following
TMF distribution

H⊥(z) =


Hd
⊥, z < z0 − ∆

2

Hmax
⊥ × sin

{
θd + π−2θd

∆

[
z−

(
z0 − ∆

2

)]}
, z0 − ∆

2 < z < z0 +
∆
2

Hd
⊥, z > z0 +

∆
2

, Φ⊥(z) ≡ Φ0 (17)

a pTDW with the following profile will emerge in the nanostrip,

θ0(z) =


θd, z < z0 − ∆

2

θd + π−2θd
∆

[
z−

(
z0 − ∆

2

)]
, z0 − ∆

2 < z < z0 +
∆
2

π − θd, z > z0 +
∆
2

, φ0(z) ≡ φd (18)

Interestingly, the above pTDW has the following features: (i) an arbitrary tilting attitude φd, (ii) a
fully controllable width ∆ and (iii) two clear boundaries (z0 ± ∆/2) with the two adjacent domains.
Note that the magnetization and TMF at z0 ± ∆/2 are both continuous, but ∇zm is not. This may lead
to a finite jump of exchange energy density right there.
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Figure 2. Illustration of pTDW profile with arbitrary titling attitude φd, controllable width ∆ and linear
polar angle distribution from θd to π − θd. The color chart indicates the variation of Mz component
along strip axis from cos θd in the left domain to − cos θd in the right domain.
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However, the pTDW has a critical width ∆c under which the entire strip has lower magnetic
energy compared with the single-domain state under the UTMF with strength Hd

⊥ and orientation Φ0.

To see this, we integrate EpTDW
tot − Edomain

tot over the entire strip and thus

∆E =
k1µ0M2

s
2

×
[
(∆0)

2 (π − 2θd)
2 1

∆
− sin 2θd + (π − 2θd) cos 2θd

2(π − 2θd)

(
1 +

k2

k1
cos2 φd

)
∆
]

(19)

Obviously, there exists a critical pTDW width

∆c ≡ ∆0 ×
(

1 +
k2

k1
cos2 φd

)− 1
2
× κ(θd), κ(θd) ≡

√
2(π − 2θd)3

sin 2θd + (π − 2θd) cos 2θd
(20)

When the wall width ∆ is larger (smaller) than ∆c, the planar domain wall in Equation (18) has
lower (higher) energy than the single-domain state under the UTMF as that in the two domains.
As Hd

⊥ → Hmax
⊥ , by defining Hd

⊥/Hmax
⊥ = 1− σ where σ is a dimensionless infinitesimal, we have

θd = arcsin(Hd
⊥/Hmax

⊥ ) ≈ π
2 −
√

2σ, thus, sin 2θd ≈ 2
√

2σ, cos 2θd ≈ −1 + 4σ and π − 2θd ≈ 2
√

2σ.
Putting all these approximations back into κ in Equation (20), we finally get κ → 2 which leads to a
finite critical pTDW width ∆c. As a result, we can always make the pTDW energetically preferred by
setting ∆ > ∆c (thus, ∆E < 0).

3.1.3. Stability Analysis

To make the explorations on statics complete and self-consistent, we need to perform stability
analysis on the pTDW profile in Equation (18). For simplicity, the variations on θ(z) and φ(z) are
processed separately. In the first step, φ(z) ≡ φ0 is fixed (thus, φ̇ ≡ 0) and the deviation of polar angle
from its static profile is supposed as

θ = θ0 + δθ (21)

Putting it back into Equation (6b), by noting that φ̇0 = 0 and θ̇0 = 0, one has

sin θφ̇− αθ̇ = γB ⇒ α

γ

∂(δθ)

∂t
= −B (22)

On the other hand, in pTDW region θ0 satisfies Equation (13b). After performing series expansion on
B around θ0 and preserving up to linear terms of δθ, we finally get

α

γ

∂(δθ)

∂t
≈
[
−Ms cos2 θ0(k1 + k2 cos2 φ0) +

2J
µ0Ms

(δθ)′′

δθ

]
× δθ (23)

Obviously, when ∣∣∣∣ (δθ)′′

δθ

∣∣∣∣ < cos2 θ0(1 + k2 cos2 φ0/k1)

(∆0)2 (24)

δθ fades out as times goes by. This implies that when the variation δθ is not too abrupt, θ0 is stable.
In fact, most variations satisfy this demand. For example, both tiny global translations along z−axis
and slight local variations proportional to z− z0 make (δθ)′′ ≡ 0 thus, assure the stability around θ0.

In the second step, we keep θ(z) ≡ θ0 and let the azimuthal angle varies as follows

φ = φ0 + δφ (25)

Substituting it into Equation (6a), by recalling that θ̇0 = 0 and φ̇0 = 0, we have

θ̇ + α sin θφ̇ = γA ⇒ α

γ

∂(δφ)

∂t
=
A

sin θ0
(26)
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Remember in pTDW region θ0 and φ0 satisfy Equation (13a). By performing series expansion on A
about φ0 and at most keeping linear terms of δθ, one has

α

γ

∂(δφ)

∂t
≈
[
−Ms(k1 + k2 sin2 φ0) +

2J
µ0Ms

2 cot θ0 × θ′0 × (δφ)′ + (δφ)′′

δφ

]
× δφ (27)

Similarly, if δφ does not varies too abruptly, that is∣∣∣∣2 cot θ0 × θ′0 × (δφ)′ + (δφ)′′

δφ

∣∣∣∣ < 1 + k2 sin2 φ0/k1

(∆0)2 (28)

the pTDW is stable around φ0, which confirms the feasibility of engineering pTDWs in magnetic
nanostrips. In particular, tiny global rotations around z−axis or slight local twistings proportional to
z− z0 will not drive pTDW away from its static profile shown in Equation (18).

3.1.4. Numerical Confirmations

To confirm the above theoretical analysis, we perform numerical simulations using the OOMMF
micromagnetics package [36]. In our simulations, the nanostrip is 5 nm thick, 100 nm wide and 1 µm
long, which is quite common in real experiments. The three average demagnetization factors are:
Dx = 0.00661366, Dy = 0.07002950 and Dz = 0.92335684 [34]. Magnetic parameters are as follows:
Ms = 500 kA/m, J = 40× 10−12 J/m, K1 = µ0k0

1M2
s /2 = 200 kJ/m3, K2 = µ0k0

2M2
s /2 = 50 kJ/m3

and α = 0.1 to speed up the simulation. Throughout the entire calculation, the strip is discretized
into 5× 5× 5 nm3 cells and all magnetic intensive quantities evaluated at each cell are the average of
their continuous counterparts over the cell volume. In all figures, z0 denotes the wall center which is
the algebraic average of the central positions (φ(z) = π/2) of each layer (row of cells with a certain
y-coordinate). At last, the external TMF at each cell is the value from Equation (17) at the cell center.

We aim to realize a pTDW with tilting attitude φd ≡ π/4 and boundary condition θd ≡ π/6 under
the TMF profile in Equation (17). To do this, firstly simple algebra provides us ∆0 = 13.80 nm (14.14 nm)
when the demagnetization is (not) considered. Then the critical pTDW width ∆c = 35.66 nm (41.31 nm)
for each case. Therefore we set the pTDW width as ∆ = 100 nm to assure energetic preference. We have
performed simulations for both cases in which magnetostatic effect is included or not. At each case,
a standard head-to-head Néel wall with width 20 nm is generated at the strip center beforehand. After
it relaxes to its stable profile, a time-independent TMF described by Equation (17) is exerted onto each
calculation cell of this strip. The magnetization texture then begins to evolve accompanied by the
decrease of total magnetic energy due to the Gilbert damping process. We set the convergence strategy
as |m×Htot|/Ms < 10−7, which is accurate enough. The results are plotted in Figure 3a,b, respectively.

In the simpler case, the pTDW profile under TMF distribution described in Equation (17) with
φd ≡ π/4, θd ≡ π/6 and ∆ = 100 nm in the absence of demagnetization is plotted in Figure 3a.
The solid black and red lines are the analytical polar and azimuthal distributions from Equation (18),
respectively. The open circles are numerical data from OOMMF simulation. Clearly the planar nature
of wall is reproduced very well. For polar angle, the linear behavior near pTDW center is unambiguous.
While the discontinuity in polar angle derivative at pTDW border (z = z0 ± 50 nm) is weakened due
to the inevitable “discretized sampling” of TMF at calculation cells during numerical simulations.
In summary one may clearly see that the numerics and analytics fit very well.
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Figure 3. Comparisons between analytical (solid lines) and numerical (hollow symbols) pTDW
profiles under TMF in Equation (17) with φd ≡ π/4, θd ≡ π/6 and ∆ = 100 nm: (a) without
demagnetization, (b) with demagnetization. The magnetic parameters are as follows: Ms = 500 kA/m,
J = 40× 10−12 J/m, K1 = µ0k0

1 M2
s /2 = 200 kJ/m3, K2 = µ0k0

2 M2
s /2 = 50 kJ/m3 and α = 0.1.

Then we switch on the magnetostatic interaction (demagnetization). Due to the complicated
dipole-dipole interaction, the magnetization orientation in the strip cross section differs a little (not too
much since the strip is thin enough). We then calculate the polar and azimuthal angles for three typical
layer (rows of cells with the same y−coordinate): top (first layer), central (tenth layer) and bottom
(twentieth layer). The resulting data are depicted in Figure 3b by different discrete hollow symbols:
crosses, squares and triangles. It turns out that they overlap each other nicely and match the analytical
profiles quite well. This not only reproves the validity of TMF in Equation (17) for realizing pTDW in
Equation (18) under more complex situations, but also shows once again the feasibility of simplifying
magnetostatic energy by local quadratic terms in thin enough nanostrips.

3.2. Axial-Field-Driven Dynamics

From the roadmap of field-driven DW dynamics [17], an axial magnetic field is crucial for driving
pTDWs to move along strip axis thus, realizing bit-switchings in magnetic nanodevices based on them.
We focus on the traveling-wave mode of pTDWs in which their profile is generalized directly from
Equation (18) by allowing z0 to depend on time meantime leaving the rest unchanged. To preserve
the pTDW profile, the TMF distribution is suggested to take the same form as in Equation (17) but
with the generalized z0, which means that TMF moves along with the pTDW sharing the same
velocity. In this section, the dynamics of these pTDWs are systematically investigated under two
strategies: 1D collective coordinate model (1D-CCM) [20] and 1D asymptotic expansion method
(1D-AEM) [32,33,37,38]. As will be shown below, they provide the same result which confirms the
feasibility of both approaches.
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3.2.1. 1D-CCM

Historically, 1D-CCM plays important role in the exploration of TDW dynamics for both field-
driven and current-driven cases. Generally it treats the center, tilting attitude and with of a DW as
independent collective variables of the system Lagrangian or the resulting dynamical equations (i.e.,
LLG equation). The classical Walker ansatz (which is indeed a pTDW profile) in the absence of any
TMFs is the first example and turns out to be the rigorous solution of LLG equation. In the presence of
UTMFs, generally no rigorous solutions exist due to the mismatch between symmetries in different
energy terms. In most theoretical works, pTDWs with quasi-Walker profiles are often proposed to
mimic the real complicated magnetization distribution. However, in Section 3.1 it has been shown that
the Walker ansatz is not the only choice that a pTDW can preceed. In this subsection, we provide the
pTDW velocity with comoving TMF profile in the framework of 1D-CCM.

Before the main context, we want to point out that to preserve the planar feature of these walls,
the strength of axial driving field should not be too high. To see this, we revisit the boundary condition
in the two domains in the presence of axial driving field H1. Note that although in pTDW region, Heff
is not parallel with m (otherwise the wall will not move), however in both domains it holds since
magnetization does not vary with time, hence A = B = 0 therein. After redefining the polar and
azimuthal angles of magnetization in the left domain as θ̃d and φ̃d (π− θ̃d and φ̃d in the right domain),
one has

0 = Hd
⊥ sin(Φ0 − φ̃d) + k2Ms sin θ̃d sin φ̃d cos φ̃d (29a)

0 = H1 sin θ̃d − Hd
⊥ cos θ̃d cos(Φ0 − φ̃d) + Ms sin θ̃d cos θ̃d(k1 + k2 cos2 φ̃d) (29b)

Obviously, only when H1 � min[Hd
⊥, Ms] one has θ̃d ≈ θd and φ̃d ≈ φd. Then after generalizing

the collective coordinate z0 from constant to time-dependent, the pTDW in Equation (18) is expected
to move along strip axis under the comoving TMF in Equation (17) with the velocity equal to dz0/dt.

To determine wall velocity in traveling-wave mode, we perform time derivative of the pTDW
profile which gives

θ̇(z, t) =


0, z < z0 − ∆

2
−π−2θd

∆ × dz0
dt , z0 − ∆

2 < z < z0 +
∆
2

0, z > z0 +
∆
2

, φ̇(z, t) ≡ 0 (30)

From Equation (5b), the traveling-mode condition φ̇(z, t) ≡ 0 leads to A = −B/α. Putting back
into Equation (5a), it turns out that −αθ̇(z, t)/γ = B. Substituting Equation (30) into it, one has

α
γ ×

π−2θd
∆ × dz0

dt = H1 sin θ − H⊥(z, t) cos θ cos (Φ0 − φ) + Ms sin θ cos θ
(
k1 + k2 cos2 φ

)
− 2J

µ0 Ms
θ′′ (31)

Note that the generalized TMF configuration and the resulting pTDW profile still satisfy Equation (13b),
thus, eliminate the last three terms in the right hand side of the above equation. Then after integrating
Equation (31) over the pTDW region, z ∈

(
z0 − ∆

2 , z0 +
∆
2

)
, and noting that

∫ z0+∆/2
z0−∆/2 1dz = ∆,∫ z0+∆/2

z0−∆/2 sin θdz = 2∆ cos θd/(π − 2θd), we finally get the wall velocity Va as

Va ≡
dz0

dt
=

γ∆
α
×ω(θd)× H1, ω(θd) ≡

2 cos θd

(π − 2θd)2 . (32)

Next we examine the asymptotic behavior of the boosting factor ω(θd) when Hd
⊥ → Hmax

⊥ .
Suppose again Hd

⊥/Hmax
⊥ = 1− σ, then cos θd ≈

√
2σ and π − 2θd ≈ 2

√
2σ. Putting them back into

Equation (32), we finally have

ω(θd) ≈
1

2
√

2σ
→ +∞ (33)
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as σ approaches to 0. This confirms the boosting effect of these TMFs on axial propagation of pTDWs.
At last, stability analysis to dynamical pTDW profile under comoving TMFs takes the same format

as static case and thus, has been omitted for saving space. It turns out that for profile variations which
are not too abrupt (see Equations (24) and (28)), the traveling-wave mode of pTDW is also stable. This
is really important for potential commercial applications of these pTDWs.

3.2.2. 1D-AEM

Next we recalculate the pTDW velocity in traveling-wave mode with the help of 1D-AEM. In this
approach, the dynamical behavior of pTDWs is viewed as the response of their static profiles to
external stimuli. Therefore it is the manifestation of linear response framework in nanomagnetism
and should be suitable for exploring traveling-wave mode of pTDWs under small axial driving fields.
Note that the TMF distribution in Equation (17) indicates that at the pTDW center TMF strength
reaches Hmax

⊥ which is finite, thus, we rescale the axial driving field strength H1 and pTDW axial
velocity Vb simultaneously,

H1 = εh1, Vb = εvb (34)

in which ε is a dimensionless infinitesimal controlling the rescaling process, vb is the wall velocity
under the axial driving field strength h1 which is of the order of Walker limit. This means a slight
external stimulus (H1) will lead to a weak response of the system, that is, a slow velocity (Vb) of pTDW
axial motion. We concentrate on traveling-wave mode of pTDWs thus, define the traveling coordinate

ξ ≡ z−Vbt = z− εvbt (35)

Meantime the TMF distribution takes the same one as in Equation (17), except for the
generalization of z→ ξ. As a result, the real solution of pTDW can be expanded as follows,

χ(z, t) = χ0(ξ) + εχ1(ξ) + O(ε2), χ = θ(φ) (36)

where θ0(φ0) denote the zeroth-order solutions and should be the static pTDW profile (will see later),
while θ1 and φ1 are the coefficients of first-order corrections to zeroth-order solutions when H1 is
present. Putting them into the LLG equation (6) and noting that ∂χ/∂t = (−εvb) · ∂χ/∂ξ, we have

(−εvb)×
(

∂θ0

∂ξ
+ α sin θ0

∂φ0

∂ξ

)
+ O(ε2) = γA0 + γA1 × ε + O(ε2) (37a)

(−εvb)×
(

sin θ0
∂φ0

∂ξ
− α

∂θ0

∂ξ

)
+ O(ε2) = γB0 + γB1 × ε + O(ε2) (37b)

with

A0 = H⊥(ξ) sin(Φ0 − φ0) + k2 Ms sin θ0 sin φ0 cos φ0 +
2J

µ0 Ms

(
2 cos θ0

∂θ0
∂ξ

∂φ0
∂ξ

+ sin θ0
∂2φ0

∂ξ2

)
(38a)

B0 = −H⊥(ξ) cos θ0 cos(Φ0 − φ0)−
2J

µ0 Ms

∂2θ0

∂ξ2 + k1 Ms sin θ0 cos θ0

[
1 +

k2
k1

cos2 φ0 + ∆2
0

(
∂φ0
∂ξ

)2
]

(38b)

and

A1 = Pθ1 +Qφ1

P = k2Ms cos θ0 sin φ0 cos φ0 +
2J

µ0Ms

[
2

∂φ0

∂ξ

(
cos θ0

∂

∂ξ
− sin θ0

∂θ0

∂ξ

)
+ cos θ0

∂2φ0

∂ξ2

]
Q = −H⊥(ξ) cos(Φ0 − φ0) + k2Ms sin θ0 cos 2φ0 +

2J
µ0Ms

(
2 cos θ0

∂θ0

∂ξ

∂

∂ξ
+ sin θ0

∂2

∂ξ2

)
(39)



Nanomaterials 2019, 9, 128 11 of 14

as well as

B1 = h1 sin θ0 +Rθ1 + Sφ1

R = H⊥(ξ) sin θ0 cos(Φ0 − φ0)−
2J

µ0Ms

∂2

∂ξ2 + k1Ms cos 2θ0

[
1 +

k2

k1
cos2 φ0 + ∆2

0

(
∂φ0

∂ξ

)2
]

S = −H⊥(ξ) cos θ0 sin(Φ0 − φ0) + k1Ms sin 2θ0

(
∆2

0
∂φ0

∂ξ

∂

∂ξ
− k2

k1
sin φ0 cos φ0

)
(40)

in which P, Q, R and S are operators.
At the zeroth order of ε, Equation (37) provides A0 = B0 = 0. Combing with the definitions

in Equation (38), its solution is just the pTDW profile in Equation (18) except for the substitution of
z→ ξ. This is not surprising since zeroth-order solution describes the response of system under “zero”
stimulus which is just the static case.

However to obtain the pTDW velocity, we need to proceed to the first order of ε. In particular,
we have to deal with R and S to get the dependence of velocity (vb) on axial driving field (h1).
By partially differentiating B0 = 0 with respect to φ0, S can be simplified to

S = ∆2
0k1Ms sin 2θ0

(
∂φ0

∂ξ

∂

∂ξ
− ∂2φ0

∂ξ2

)
≡ 0 (41)

due to the planar nature of walls. On the other hand, the partial derivative of B0 = 0 with respect to θ0

helps to simplify R to

R =
2J

µ0Ms

[
− ∂2

∂ξ2 +

(
∂θ0

∂ξ

)−1 (∂3θ0

∂ξ3

)]
≡ L (42)

which is the 1D self-adjoint Schrödinger operator appeared in previous works [32,33,37,38]. Then
Equation (40) rigorously turns to

Lθ1 = −h1 sin θ0 + (−vb)×
(
−α

∂θ0

∂ξ

)
(43)

Again the “Fredholm alternative” requests the right hand side of the above equation to be orthogonal
to the kernel of L (subspace expanded by ∂θ0/∂ξ) for the existence of a solution θ1, where the inner
product in Sobolev space is defined as 〈 f (ξ), g(ξ)〉 ≡

∫ ξ=+∞
ξ=−∞ f (ξ)× g(ξ)dξ. Noting that 〈 ∂θ0

∂ξ , sin θ0〉 =
2 cos θd and 〈 ∂θ0

∂ξ , ∂θ0
∂ξ 〉 = (π − 2θd)

2/∆, we finally get

Vb ≡
dz0

dt
=

γ∆
α
× 2 cos θd

(π − 2θd)2 × H1 (44)

which is the same as Equation (32) from 1D-CCM.

4. Discussion

First of all, we want to clarify that our TMF profile in Equation (17) is continuous along z-axis,
but its spatial gradient has an abrupt jump at z = z0±∆/2. This leads to the polar angle distribution of
the pTDW in Equation (18), which is also continuous along z−axis but has finite jump in spatial
gradient at z = z0 ± ∆/2. This analytical result is obtained based on the assumption that the
magnetostatic interaction is fully described by local quadratic terms. However in reality, the residual
high-order or even nonlocal conponents of the magnetostatic interaction may avoid discontinuity
in dθ/dz. Second, in real experiments, the prepared TMF profile usually can not strictly follow the
analytical expression in Equation (17), especially around z = z0 ± ∆/2. Thus the discontinuity in
dθ/dz may not appear. This is also the case in our numerical simulations in Figure 3 since now TMF
is sampled at different calculation lattice points and thus, different from the continuous expression
in Equation (17). Therefore the discontinuity in dθ/dz at z = z0 ± ∆/2 is smeared out. In summary,
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the abruptness found in the analytic approach can be viewed as a convenient approximation to the
real wall profile.

Second, in Section 3.2 we point out that under axial driving fields, the pTDW velocity can be
considerably increased due to the divergent behavior of the boosting factor ω(θd) when H⊥ → Hmax

⊥
(see Equation (33)). Interestingly, the contribution of pTDW width, i.e., ∆, is also an important boosting
factor. From Equation (20) one has a finite critical pTDW width even when H⊥ → Hmax

⊥ . Therefore to
further increase the pTDW velocity, broadening the pTDW width should also be effective.

Third, to realize pTDWs the “orientation-fixed" strategy proposed here has several advantages
comparing with the “amplitude-fixed" one introduced before [33]: (i) the wall width can be freely tuned,
(ii) the rigorous pTDW profile and the corresponding TMF distribution can be explicitly written out, (iii)
the asymptotic behavior of the boosting factor in axial-field-driven case can be analytically explored,
(iv) most importantly, the “orientation-fixed" strategy is much easier to realize in real experiments.

For example, the following procedure can be applied to realize a pTDW with center position
z0, width ∆, tilting attitude φd and boundary condition θd(π − θd). First a short and strong enough
field or current pulse is exerted to induce a wall around z0 and after a transient process it finally
becomes static in easy plane with Walker’s profile. Then a series of ferromagnetic scanning tunneling
microscope (FM-STM) tips are placed along the wire axis with fixed tilting attitude Φ0 to produce
a series of localized TMF pulses [39]. By arranging these tips with proper spacing and distance to
strip axis, the envelope of these pulses is tuned to be the TMF profile in Equation (17). The resulting
static wall profile is the pTDW shown in Equation (18). When driving by axial field, since the transient
process prior to traveling-wave mode is short (picoseconds), the FM-STM tips can be arranged to move
at the velocity in Equation (32) so as to synchronize with the pTDW.

An alternative strategy of generating this TMF pulse is to modulate the anisotropic strength along
strip axis. For a given magnetic material, the crystalline anisotropy is fixed. Nevertheless, one can
manipulate the shape anisotropy (magnetostatic interaction) by tailoring the cross section area along
the strip axis so as to induce the TMF profile in Equation (17). However, this strategy only holds for
generating static pTDWs and fails for dynamical purpose. To overcome this shortage, such required
TMF profile may be produced by nanoferromagnets with strong ferromagnetic (or antiferromagnetic)
coupling to the nanostrip. By properly designing the shape of the extra nanoferromagnets, the required
TMF profile can be induced. By moving the nanoferromagnets with precalculated velocity from the
material parameters, the pTDWs in the original nanostrip can be driven to propagate along strip axis
by axial magnetic fields.

At last, our “orientation-fixed” strategy can be generalized to the cases where pTDW motion
is induced by spin-polarized currents, spin waves or temperature gradient, etc. Similar discussions
can be performed to realized these pTDWs with clear boundaries. Magnetic nanostrips bearing
with these walls would serve as proving ground for developing new-generation nanodevices with
fascinating applications.

5. Conclusions

In this work, the “orientation-fixed” TMF profiles are adopted to realize pTDW with arbitrary
tilting attitude in biaxial magnetic nanostrips. After solving the LLG equation, unlike the classical
Walker ansatz we obtain a pTDW with clear boundaries with adjacent domains and linear polar angle
distribution inside wall region. More interestingly, the wall width can be freely tuned for specific
usages. With TMF profile synchronized along with, these pTDWs can propagate along strip axis with
considerably high velocity (well above that from the Walker ansatz) when driven by axial magnetic
fields. These results should provide new insights in developing fascinating new-generation magnetic
nanodevices based on DW propagations in nanostrips.
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Abbreviations

The following abbreviations are used in this manuscript:

DW Domain wall
TDW Transverse DW
pTDW planar TDW
TMF Transverse magnetic field
UTMF Uniform TMF
LLG Landau-Lifshitz-Gilbert
1D one-dimensional
1D-CCM 1D collective coordinate model
1D-AEM 1D asymptotic expansion method
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