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Abstract: Dye wastewater is one of the most important problems to be faced and solved in wastewater
treatment. However, the treatment cannot be single and simple adsorption due to the complexity
of dye species. In this work, we prepared novel composite fiber adsorbent materials consisting
of ε-polycaprolactone (PCL) and beta-cyclodextrin-based polymer (PCD) by electrospinning.
The morphological and spectral characterization demonstrated the successful preparation of a series
of composite fibers with different mass ratios. The obtained fiber materials have demonstrated
remarkable selective adsorption for MB and 4-aminoazobenzene solutions. The addition of a PCD
component in composite fibers enhanced the mechanical strength of membranes and changed the
adsorption uptake due to the cavity molecular structure via host–guest interaction. The dye removal
efficiency could reach 24.1 mg/g towards 4-aminoazobenzene. Due to the admirable stability and
selectivity adsorption process, the present prepared beta-cyclodextrin-based composite fibers have
demonstrated potential large-scale applications in dye uptake and wastewater treatment.

Keywords: beta-cyclodextrin polymer; host–guest interaction; dye removal; wastewater treatment;
electrospinning

1. Introduction

Contamination by dyes has led to many environmental problems [1–9]. In recent years, how to
manage water pollution by an efficient, simple, and safe method has become a hot topic in the field
of wastewater treatment research [10–12]. However, the treatment of dye wastewater is much more
difficult than other kinds of wastewater due to the complexity and diversity of dye molecules [13–21].
Azo dyes are one of the most widely used dyes with chromogenic groups [22–24]. Azo dyes and their
byproducts have been a focus of research attention due to their severe toxicological effects on human
health: they are known to be genotoxic agents with carcinogenic properties [25–28] that may lead to
birth defects [29] and food security issues [30–33]. Beyond this, dysfunction of the kidney, reproductive
system, liver, brain, and central nervous system could also be exacerbated by azo dyes [34–36]. Thus,
it is urgent that we learn how to properly deal with Azo dyes to achieve a safe and clean environment.
Many studies have made great efforts to do this [37–40]. However, traditional technologies and
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methods cannot deal with the fact that different kinds of dyes need different treatments. Azo dyes are
no exception. Therefore, selective chemical adsorption for different dyes has attracted wide interest.
The selectivity of adsorbents is the key to the adsorption capacity and performance.

On the other hand, cyclodextrin, as a class of cyclic oligosaccharides, has a hollow circular
cone with external hydrophilicity and internal hydrophobicity. This special structure has many
special physical and chemical properties. It can selectively bind small organic molecules in an
aqueous solution and the inclusion complexes formed have different degrees of stability [41–43].
Therefore, cyclodextrins and their derivatives are widely used in medicine, food, chemical engineering
materials, and especially in wastewater treatment [44–48]. For example, Li et al. prepared a
cyclodextrin-based material to remove malachite green [49]. The adsorption results fit the Langmuir
model and the maximum adsorption capacity reached 91.9 mg/g. Yilmaz et al. synthesized
two β-cyclodextrin-based polymers with the help of 4,4′-methylene-bis-phenyldiisocyanate (MDI)
or hexamethylenediisocyanate (HMDI) [50]. These materials could remove azo dyes, as well as
aromatic amines, while the dominant adsorption mechanism was host–guest interaction. Ozmen et
al. synthesized three beta-cyclodextrins and a starch-based polymer using HMDI [51]. They have
compared the adsorption capacity and the results showed high adsorption performance toward
some azo dyes. Generally, researchers have made a lot of efforts towards dealing with azo dyes
in the field of wastewater treatment. In addition, electrospinning technology demonstrated an
effective method to prepare fiber materials due to its obvious advantages of simple operation and
easy regulation [52–56]. At present, some cyclodextrin-based fiber systems via electrospun approach
have been reported [57–60]. For examples, Cui et al. described the investigation of plasma-treated
poly(ethylene oxide)-beta-cyclodextrin nanofibers to enhance the antibacterial activity [57]. Celebioglu
et al. demonstrated the electrospinning of polymer-free nanofibrous structures from an inclusion
complex between hydroxypropyl-beta-cydodextrin vitamin E [58]. The prepared vitamin E-contained
web provided enhanced photostability for the sensitive vitamin E by the inclusion complexation even
after exposure to UV light.

Based on previous reports, we have devoted our efforts to solving the increasingly serious azo
dye contamination by novel selective composite fiber absorbents containing beta-cyclodextrin-based
polymer (PCD) and ε-polycaprolactone (PCL). The electrospinning approach was an eco-friendly
and simple preparation method. One of the indispensable advantages of the electrospinning
membrane was the ultra-high specific surface area, which was extremely beneficial to adsorption.
More importantly, the PCD was selected for its infinite long-chain and cavity structures. The obtained
membrane contributed to the formation of more host–guest interaction due to a large number of
free cyclodextrin cavities in the fiber surface. Thus, the excellent selective adsorption capability
was foreseeable according to a previous report [61]. A few cyclodextrin cavities could be occupied
by long-chain polymer molecules during the electrospinning progress, which is unfavorable for
host–guest interactions and even results in a decrease in the undesirable adsorption effect. However,
our PCL/(n%)PCD composite fibers have innumerable cavities, which could guarantee the selective
adsorption capacity. Thus, it is obvious that the obtained PCL/(n%)PCD composite fibers can exhibit
remarkable adsorption capacity towards azo dyes with the host–guest interaction. Moreover, the
introduction of the β-cyclodextrin polymer could efficiently improve the mechanical strength and
stability of the membrane. This indicated that the obtained composites have great potential to provide
assistance with the problem of azo dye pollution in wastewater treatment.

2. Materials and Methods

2.1. Materials

Beta-cyclodextrin (98%, abbreviated as β-CD) and epichlorohydrin (C3H5ClO, 99.5%) were
purchased from Aladdin Chemicals (Shanghai, China). Methylbenzene (99%), chloroform (99%),
and N,N-dimethylformamide (99%, abbreviated as DMF) were obtained from Beijing Chemicals
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(analytical reagent grade, Beijing, China). Acetone (C3H6O, 99.5%) was purchased from Alfa Aesar
Chemicals (Shanghai, China). ε-Polycaprolactone (PCL average Mw~80000), methylene blue (MB) and
4-aminoazobenzene were purchased from Sinopharm Chemical Reagent Co., Ltd. (analytical reagent
grade, Shanghai, China). Hydrochloric acid (HCl, 99%) and sodium hydroxide (NaOH, 99%) were
obtained from Tianjin Kaitong Chemicals (Tianjin, China). Ultra-pure water was obtained using a
Millipore Milli-Q water purification system with a resistivity of 18.2 MΩ·cm−1. All chemicals were
used as received without further purification.

2.2. Preparation of β-Cyclodextrin Polymer (PCD)

First, the used β-cyclodextrin polymer (PCD) was synthesized as in previous similar
studies [62,63]. In brief, 10 g β-cyclodextrin was dissolved in 15 mL aqueous 15 wt% NaOH solution in
a clean beaker, and the system was stirred by mechanical agitation for at least 24 h at 35 ◦C in a water
bath. Subsequently, the 2 mL toluene solution was added to a beaker that was continuously stirred
at 35 ◦C for two hours. Then we added 14.8 mL epichlorohydrin solution and the whole system was
stirred for 3 h. After that the mixture system was added to 200 mL acetone solution and stirred at
50 ◦C overnight. The precursor was filtered and dissolved in water, before using hydrochloric acid to
neutralize it. After seven days of dialysis with ultra-pure water, freeze-drying treatment at −48 ◦C
was performed. The product, solid white PCD, was obtained and stored for further use.

2.3. Preparation of Electrospun Composite Fibers

The total mass of the electrospinning precursor was 10 g. The mixture solvent was made of
chloroform and N,N-dimethylformamide with a volume ratio of 3:2. The 1.2 g ε-polycaprolactone in
pellet form and 8.8 g mixture solvent were magnetically stirred for 4 h to obtain a uniform solution,
in accordance with previous reports [64,65]. Through electrospinning, neat PCL fibers were obtained.
In addition, a different mass of poly β-cyclodextrin powder was added to a PCL/(CCl4/DMF)
solution and formed a uniform spinning solution by magnetic stirring all night. During the following
electrospinning, the flow rate was delivered at 1 mL·h−1, while the potential difference was set to
15–30 kV and the distance was 15–30 cm from the point of the needle to the collector. By regulating
the spinning conditions, we finally obtained the optimal conditions based on the analysis of SEM
images. On the condition of constant content of PCL molecules in total mass, different masses of poly
β-cyclodextrin (PCD) component (10, 20, 30, 40, 50 wt%) were mixed with PCL to obtain composite
fibers abbreviated as PCL/(n%)PCD (n = 10, 20, 30, 40, and 50). The specific components and quantities
of electrospinning solution in the different groups are shown in Table 1. All of the samples were rested
in a vacuum drying oven for two days in order to volatilize the remaining solvent.

Table 1. The specific components and quantities used in electrospinning precursor solutions.

PCD Concentration (wt%) 0 10 20 30 40 50

PCL (g) 1.20 1.20 1.20 1.20 1.20 1.20
CCl4 (mL) 4.17 4.11 4.02 3.92 3.78 3.60
DMF (mL) 2.78 2.74 2.68 2.61 2.52 2.40

2.4. Dye Removal Tests

The dyes methylene blue (MB) and 4-aminoazobenzene were used to estimate the adsorption
properties of PCL/(n%)PCD (n = 10, 20, 30, 40, and 50) composite fibers with neat PCL fiber as the
control group. UV–VIS absorption spectra were recorded for the process at wavelengths of 632 nm (MB)
and 375 nm (4-aminoazobenzene) by a UV–VIS spectrometer. The freshly prepared definite samples
(5 mg) were added to 50 mL dye solutions that contained MB (10 mg/L) and 4-aminoazobenzene
(20 mg/L), respectively. The absorbance was measured, and corresponding concentrations and kinetic
data were calculated by calibration curves. At the end of the adsorption process, all samples were
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washed with ethanol and DI water for several times and dried in a drying oven before further use.
In addition, the recycling capacity of PCL/(n%)PCD composites was investigated. The prepared
samples were repeatedly used to remove the same fresh MB solution for eight consecutive cycles.

2.5. Characterization

The microstructures of all the obtained composite materials were characterized by a field-emission
scanning electron microscopy (FE-SEM, Hitachi S-4800-II, Tokyo, Japan) with 5–15 kV accelerating
voltage. Energy-dispersive X-ray spectrometry (EDXS) was utilized to distinguish the elements in
membranes at an accelerating voltage of 200 kV by taking advantage of an Oxford Link-ISIS X-ray
EDXS microanalysis system. In addition, themogravimetry-differential scanning calorimetry (TG-DSC)
was carried out to estimate the thermal stability of samples in air with a NETZSCH STA 409 PC Luxxsi
multaneous thermal analyzer (Netzsch Instruments Manufacturing Co., Ltd., Seligenstadt, Germany).
FTIR spectra were measured to analyze the molecular absorption spectroscopy by a Fourier infrared
spectroscopy (Thermo Nicolet Corporation, Madison, WI, USA) using the KBr tablet method. X-ray
diffraction (XRD) analysis was performed on an X-ray diffractometer equipped with a Cu Kα X-ray
radiation source and a Bragg diffraction setup (SMART LAB, Rigaku, Japan). Circular dichroism
spectra were measured by a JASCO J-810 CD spectrometer (Jasco Inc., Easton, MD, USA). UV–VIS
absorption was used to monitor the adsorption progress by a UV–VIS spectrometer (752-type, Sunny
Hengping Scientific Instrument Co., Ltd., Shanghai, China) at room temperature.

3. Results and Discussion

3.1. Structural Characterization of the Composite Polymer Fibers

Firstly, we prepared a uniform PCL spinning solution by taking advantage of the CCl4 and DMF
mixed solvent. By attempting different parameters including voltage, type of stainless steel needle,
distance between needle, aluminum foil, and injection rate, we finally confirmed the optimal conditions
that need to be abided by in the following electrospinning. The illustration of the preparation and
application in organic dyes of PCL/(n%)PCD composites is shown in Figure 1. Thus, we can get
the PCL/(n%)PCD composite fibers by electrospinning under the optimal parameter conditions.
In order to volatilize the excess solvent, all the samples have been put in a drying oven for two days.
The adsorption capacities of a series of composite fibers were characterized by taking advantage of the
methylene blue (MB) and 4-aminoazobenzene solution.

The optimal conditions of electrospinning were obtained under different mixed ratios of PCD,
after attempts and characterization of different parameters. Based on this, the representative
micromorphology images by SEM of neat PCL fibers and PCL/(n%)PCD composite fibers are depicted
in Figure 2. The neat PCL fibers showed a homogeneous solid fiber structure, and multiple layers of
fibers were stacked together in the form of an electrospun membrane. The physical properties of the
spinning precursor solution changed through different ratios of PCD power. Therefore, the parameters
of the electrospinning have also changed. After multiple trials and adjustment, the ideal conditions
for fiber formation were obtained. The micromorphology pictures of fibers with different ratios of
PCD, that is, PCL/(10%)PCD, PCL/(20%)PCD, PCL/(30%)PCD, PCL/(40%)PCD, and PCL/(50%)PCD,
can be seen in Figure 2. The diameter of neat PCL fibers appeared at a centered position of 500–600 nm
with the length in microns. In addition, with the addition of a PCD component in fibers, the fiber
diameters decreased and reached a centered range of 200–400 nm for the obtained PCL/(40%)PCD
composite fiber. A possible reason for diameter decrement was that the strong network between
the neighboring chains could be temporarily destroyed during the electrospinning process, which
enhanced the stretching of the jet [66]. As for the PCL/(50%)PCD composite fiber, more cross-linking
fibers could be clearly observed, mainly due to the increasing viscosity of the precursor solution.
Moreover, when the content of PCD in precursor solution exceeded 50%, the electrospun needle would
clog and could not obtain continuous electrospun fibers.
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Figure 1. Schematic illustration of preparation and application in dye removal of PCL/(n%)PCD
composite fibers by electrospinning.

It was well known that the thermal stability of composite materials is an important factor
in their characterization and wider application. The thermal stabilities of the obtained neat PCL
fiber and a series of PCL/(n%)PCD fiber composites were investigated by the thermogravimetry
(TG) curves as shown in Figure 3. In the N2 condition, all the samples were heated from room
temperature to 800 ◦C through a temperature-programmed route. Before the temperature reached
300 ◦C, the thermogravimetric curves of PCL fiber remained stable and there was no significant
weightlessness. The one-stage degradation was related to the decomposition of the carbon skeleton
from 372 ◦C to 457 ◦C. The final weight loss was approximately 79.8 wt% at 800 ◦C. In the cases
of present PCL/(n%)PCD composites, weight loss below 150 ◦C could be considered as removal of
trace moisture vapor adsorbed by PCD fibers and/or a small amount of crystal water entrapped
by PCD cavities. After that, the thermal degradation from 307 ◦C to about 370 ◦C corresponds to
PCD molecules. This is followed by the degradation of neat PCL fibers from about 370 ◦C to 450 ◦C.
With the increment of the PCD component, the initial degradation temperature and the final mass of
residue of PCL/(10%)PCD obviously dropped to 17.4 wt%, while the other PCL/(n%)PCD composites
was about 3 wt%. It was obvious that the weight loss originated from decomposition of PCL and
PCD components.
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XRD data are frequently used to characterize and confirm the presence of both components.
As seen in Figure 4, the two diffraction peaks of neat PCL fibers appeared at 2θ values of 22◦ and
24◦ can be indexed to (110) and (200) reflections, which confirms its orthorhombic crystal structure.
In addition, PCD powder elicits many small and cluttered characteristic peaks, which can be attributed
to the cage structure of native beta-CD. It was apparent that all samples of obtained PCL/(n%)PCD
composite fibers show the same characteristic peak and only have two components without any other
impurities. However, slightly broadened characteristic peaks of PCL molecules in PCL/(n%)PCD
fibers can be clearly observed. We also noted that the peak shifted slightly to the right. Such results
can imply that there are some interactions between PCL and PCD molecules. The content of PCD
incorporated into PCL fibers was little in our work. Therefore, it is not sufficient to cause the obvious
XRD spectral characteristic peak change of PCL/(n%)PCD composite fibers. XRD results complement
the TG findings and indicate the presence of a physical mixture in the obtained composites as well.
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FT-IR analyses were performed for conclusive evidence, and the results are shown in Figure 5.
The conformational changes of the PCL fibers and PCL/(n%)PCD fibers were characterized by Fourier
transform infrared spectroscopy. It can be seen that the characteristic peaks of pure PCL spectra are
mainly typical ester bonds and hydrocarbon bonds. The additional peaks at 1728 cm−1, 1243 cm−1,
and 1046 cm−1 represent the vibration peaks of C=O, C–O–C, and C–C groups. In addition, the strong
wide peak at 3355 cm−1 can be ascribed to the association of hydrogen bonds formed by the –OH
group. In addition, the absorption peak at 1033 cm−1 represents C–O–C and C–O stretching vibration
of the beta-CD cross-linked polymer cavity. In addition, composite fibers of PCL with increasing
content of PCD addition (0, 10, 20, 30, 40, and 50 wt%) can show similar changes of type and position
of characteristic peak. Based on the above, the designed PCL/(n%)PCD composite fiber samples were
successfully synthesized. In addition, the microstructures of the obtained PCL fiber and PCL/(n%)PCD
composite fibers were investigated using N2 adsorption–desorption isotherms. The obtained properties
of the samples were generalized in Table 2. It could be clearly observed that the as-obtained PCL fibers
showed a specific surface area of 7.50 m2·g−1. In addition, with the increment of the PCD component in
the composite fibers, the values of specific surface area obviously increased and reached 11.52 m2·g−1

for PCL/(50%)PCD composite fibers, demonstrating the formation of more anchoring sites facilitating
the next adsorption of dye molecules. Meanwhile, the pore size and pore volume of all samples were
calculated via BJH methods. The obtained PCL/(50%)PCD composite fibers also exhibited enhanced
pore size and pore volume, meaning that larger pore diameters and pore volumes in composite fibers
could demonstrate lots of micro/nanoscale channels, thereby making them effective for the next
adsorption experiment.
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Table 2. Physical data of as-prepared composite fibers.

Samples Specific Surface Area
(m2·g−1)

Average Pore Diameter
(nm)

Pore Volume
(cm3·g−1)

PCL fiber 7.50 20.1 0.008231
PCL/(10%)PCD 7.82 20.5 0.008464
PCL/(20%)PCD 7.96 21.0 0.008576
PCL/(30%)PCD 8.45 22.5 0.009125
PCL/(40%)PCD 10.85 23.6 0.009277
PCL/(50%)PCD 11.52 23.6 0.009446

The tensile properties and stress–strain plots of several PCL/(n%)PCD composites were conducted
at room temperature with neat PCL fibers as a control for comparison, as shown in Figure 6. It is evident
that the neat PCL fiber has a high elongation at break (above 470%). Correspondingly, the elongation at
break of our functionalized PCL/(n%)PCD samples has decreased markedly with the increase in PCD
content. The elongation of PCL/(10%)PCD fibers at break was 230%, while the value of PCL/(50%)PCD
fibers was only 74%. The elongation at break of PCL/(20%)PCD, PCL/(30%)PCD and PCL/(40%)PCD
was 171%, 150%, and 127%, respectively. Compare with neat PCL fibers, the elongation at break
eventually declined sharply by six times. In addition, the ultimate tensile strength of neat PCL was
2.25 MPa. In hybridization cases of PCL/(n%)PCD samples, the fracture stress presented a trend of
first increasing, then decreasing, and next increasing along with the change of content of PCD. It could
be seen that the fracture stress generally increased and the final PCL/(50%)PCD composites were
destroyed when the fracture stress reached 3.41 MPa. Clearly, the introduction of PCD significantly
weakened the elongation at break but prominently increased the ultimate tensile strengths of present
composite fibers. This change phenomena seemed similar to previous report about electrospun
composite poly(ethylene glycol)/poly(caprolactone) nanofibrous membrane [67]. One explanation
could be that the content of PCD increased with the decrease of solvents, resulting in the presence of
hard segments or clusters. It could be clearly seen that the obtained PCL/(n%)PCD composite materials
showed good tensile strength, with PCD component playing a key role in improving it [68,69].
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3.2. Dye Removal Performance of the Composite Fibers

In order to characterize the selective dye removal performances of the present obtained
composite fiber absorbents, the obtained PCL/(n%)PCD composite fibers were investigated with
respect to their uptake of removing MB and 4-aminoazobenzene (AA) as typical models [70,71].
The mechanism of removing organic dye molecules was adsorption and host–guest interaction
for MB and 4-aminoazobenzene, respectively. In addition, neat PCL was used as a control group
and the whole adsorption progress was monitored by taking advantage of the UV–VIS spectra.
The adsorption properties of PCL/(n%)PCD composites toward MB and 4-aminoazobenzene are shown
in Figure 7. Clearly, the PCL/(n%)PCD samples showed better dye uptake than neat PCL toward
the two organic dyes. However, the adsorption uptake of PCL/(n%)PCD composite fibers became
better with the increment of the content of PCD compared with PCL. The adsorption kinetics data
distinctly demonstrated the above view. The pseudo-first-order model and pseudo-second-order model
adsorption equations were used to further evaluate adsorption kinetics by fitting the experimental
data. All the fitted results are summarized in Table 3.

The pseudo-first-order model can be demonstrated by Equation (1) [53]:

log (qe − qt) = log qe −
k1

2.303
t (1)

where t is the adsorption time, qe is the adsorption capacity at equilibrium, k1 is the pseudo-first-order
model rate constant, and qt is the adsorption capacity at time t.

The pseudo-second-order model can be demonstrated by Equation (2) [72]:

t
qt

=
1

k2qe2 +
t
qe

(2)

where qe is the adsorption uptake at equilibrium, k2 is the pseudo-second-model rate constant, and qt

is the adsorption uptake at time t.
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Table 3. The fitting results achieved for kinetic adsorption data using the pseudo-first-order model and
pseudo-second-order model equation.

MB
Pseudo-First-Order Model Pseudo-Second-Order Model

qe
(mg/g) R2 K1

(min−1)
qe

(mg/g) R2 K2
(g/mg min)

PCL 3.8246 0.9337 0.0393 3.8879 0.9989 0.0811
PCL/(10%)PCD 4.4238 0.9129 0.0317 4.4767 0.9979 0.0568
PCL/(20%)PCD 5.1414 0.9498 0.0337 5.4077 0.9936 0.0206
PCL/(30%)PCD 7.3002 0.9404 0.0376 7.4862 0.9980 0.0303
PCL/(40%)PCD 8.0465 0.9398 0.0550 8.2740 0.9991 0.0373
PCL/(50%)PCD 10.5238 0.9837 0.0399 11.1632 0.9931 0.0102

4-aminoazobenzene
Pseudo-first-order model Pseudo-second-order model

qe
(mg/g) R2 K1

(min−1)
qe

(mg/g) R2 K2
(g/mg min)

PCL 6.8517 0.9916 0.0203 7.4427 0.9868 0.0064
PCL/(10%)PCD 13.9828 0.9872 0.0218 18.7512 0.9981 0.0090
PCL/(20%)PCD 15.6643 0.9941 0.0191 18.6324 0.9931 0.0014
PCL/(30%)PCD 16.7213 0.9986 0.0178 25.7070 0.9986 0.0004
PCL/(40%)PCD 18.9147 0.9895 0.0201 23.6183 0.9978 0.0009
PCL/(50%)PCD 20.1740 0.9870 0.0244 24.0674 0.9943 0.0012

In the case of the MB solution, the pseudo-second-order model had a higher correlation coefficient
(R2 > 0.99) than the pseudo-first-order model (R2 > 0.93). The obtained values of adsorption uptake
were almost equal to those fitted from the pseudo-second-order model. In addition, neat PCL fibers
showed low adsorption uptake, while the PCL/(n%)PCD samples all greatly improved, as shown
in Figure 7 and Table 2. The dye removal efficiency of neat PCL fibers only reached 3.8246 mg/g.
With the increment of PCD content, the adsorption uptake of composite fibers enhanced significantly,
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from 4.4238 mg/g to 10.5238 mg/g. The composite fibers showed a good adsorption performance for
MB mainly due to the following two reasons. Firstly, PCL, as the most basic component in electrospun
fibers, has almost no efficient groups for adsorption. Secondly, the unique cavity structure of PCD
has great potential to identify and select organic molecules. Thus, MB molecules could not enter
into the cavity of PCD. Only a small number of hydroxyl groups could form hydrogen bonds to
facilitate the adsorption of the MB dye solution. However, we could still come to the conclusion that
the introduction of PCD was conducive to adsorption.

By contrast, PCL/(n%)PCD samples exhibited outstanding adsorption uptake to 4-aminoazobenzene.
It was clearly observed that the pseudo-second-order (R2 > 0.99) was more accurate than
the pseudo-first-order model. Thus, the adsorption progress was more consistent with the
pseudo-second-order dynamic model. In Table 3, the dye removal efficiency of PCL/(10%)PCD
could reach 18.7512 mg/g, which was twice as high as the PCL fibers’ adsorption uptake. While more
and more PCD molecules were added and the proportion in spinning membranes was increasing,
the dye removal efficiency of the obtained composite fibers increased continuously and rapidly.
The PCL/(50%)PCD composites finally reached 24.0674 mg/g. Apparently, the adsorption uptake
of PCL/(n%)PCD toward 4-aminoazobenzene had appreciable performance due to the addition of
host–guest inclusion complexation. The 4-aminoazobenzene molecules could be included in the cavity
structure of PCD through host–guest interaction and/or being bound by the fiber surface through
electrostatic interaction and hydrogen bonds. The formed self-assembled structures were stable and
highly efficient.

In order to further prove that the driving force of removal mechanism relative to
4-aminoazobenzene consisted of host–guest interaction, we collected the data of UV–VIS and circular
dichroism spectra to characterize the PCL/(50%)PCD membrane before and after the adsorption
process, as shown in Figure 8. Obviously, as-prepared PCL/(50%)PCD membrane have no significant
characteristic peak in Figure 8a. After adsorption of 4-aminoazobenzene, the maximum absorption
peak of the composites appears at 400 nm, which was attributed to π–π* electron transition of the
4-aminoazobenzene group [73–77]. However, the additional characteristic peak of 4-aminoazobenzene
was at 370 nm. Therefore, the peak position of PCL/(50%)PCD membrane had a red shift after
adsorption, which could result from an interaction between the hydroxyl of PCD and the chromogenic
group of 4-aminoazobenzene. The circular dichroism spectra of PCL/(50%)PCD membrane have
shown similar results. The intensity of the signal was notable at 400 nm, with one positive Cotton
effect in Figure 8b. In addition, the images of SEM with C/O/N elemental mapping of PCL/(50%)PCD
composite fibers after adsorption of 4-aminoazobenzene have also been measured and are shown
in Figure 9. Obviously, a large quantity of N element was well distributed onto the obtained fibers
(Figure 9d), which further confirmed the presence and the good distribution of 4-aminoazobenzene in
the obtained composite fiber. It could be speculated that hydrophilic 4-aminoazobenzene molecules
was successfully anchored on the surface of PCL/(50%)PCD fibers by intermolecular host–guest
interaction and/or electrostatic interaction/hydrogen bonding, which could be expected to exert
adsorption activity and good stability in the next recovery and reuse process. Thus, combined with
UV–VIS spectra, the presence of a 4-aminoazobenzene group in the obtained composite materials
was further confirmed. So, it could be considered that the host–guest reaction occurred and the
4-aminoazobenzene moiety was located inside the cavity of PCD molecules via host–guest interaction
and/or anchored the surface of fiber via electrostatic interaction/hydrogen bonding. In addition,
it should be noted that the signal intensity of the circular dichroism spectra was lower, which could be
mainly due to two reasons. Firstly, partial PCD did not have enough contact with 4-aminoazobenzene
to form an inclusion complex because some cavities of PCD were inside the fibers. Secondly, partial
4-aminoazobenzene molecules only stayed on the surface of the membrane due to intermolecular
hydrogen bonding.
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Figure 9. SEM image (a) with C/O/N elemental mapping (b–d) of AA-absorbed PCL/(50%)PCD
composite fibers.

Adsorption reutilization research into PCL/(50%)PCD’s removal of MB was conducted and
the results are shown in Figure 10, with graphic illustration of used nanocomposite after eight
reutilization cycles. The obtained PCL/(n%)PCD composite fibers could be recovered and reused
by a simple washing and drying process. The membrane became blue after the adsorption of MB
molecules, followed by desorption in ethanol. Rapid and simple desorption and regeneration created
favorable conditions for reutilization. In the case of PCL/(50%)PCD, the removal of MB dye could
still reach 78% after repeated adsorption over eight cycles. The loss of adsorption may result from
a slightly deformed fiber structure and a few cavities of PCD molecules being occupied. All in all,
the composites consisting of PCL and PCD molecules have good stability in the field of adsorption
of organic dyes. It should be noted that the obtained PCL/(n%)PCD composites can hardly exhibit
outstanding adsorption capacity in a three-dimensional matrix such as a hydrogel structure. However,
the present PCL/(n%)PCD composites have demonstrated a capacity for selectivity adsorption and
excellent stability towards present two kinds of dyes. In addition, the electrospinning nanocomposites
formed by poly β-cyclodextrin have relatively more cavities than β-cyclodextrin monomer molecules.
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Thus, generous cavities were highly beneficial to the field of selectivity adsorption. Moreover,
the introduction of PCD molecules made the composites have better mechanical strength, which
also contributed to the improvement of stability. All in all, the PCL/(n%)PCD electrospinning
membranes not only have remarkable selectivity adsorption, but also admirable stability, which is
important for the prospect of industrialization in the field of wastewater treatment and self-assembled
nanomaterials [78–80].
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4. Conclusions

In summary, we have successfully prepared electrospun PCL/(n%)PCD (n = 10, 20, 30, 40, 50)
composite fiber materials via a simple and low-cost method. It could be seen that the prepared
PCL/(n%)PCD composites showed uniform fiber nanostructures and had been well characterized.
According to the strain–stress plots, PCD molecules were advantageous to improve the mechanical
strength of the obtained fiber films. In addition, the introduction of PCD led to excellent uptake of
selectivity adsorption in the obtained electrospun composite films with a high specific surface area.
In addition, the improvement of mechanical strength also enhances the stability of electrospinning
membranes. This research work has proposed a new design of electrospun composites with a
cyclodextrin component and suggested new possibilities in selective adsorption for dye removal.
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