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Abstract: Intersubband optical transitions, refractive index changes, and absorption coefficients are
numerically driven for direct bandgap strained GeSn/Ge quantum dots. The linear, third-order
nonlinear and total, absorption coefficients and refractive index changes are evaluated over useful
dot sizes’ range ensuring p-like Γ-electron energy state to be lower than s-like L-electron energy
state. The results show strong dependence of the total absorption coefficient and refractive index
changes on the quantum dot sizes. The third order nonlinear contribution is found to be sensitive to
the incident light intensity affecting both total absorption coefficient and refractive index changes,
especially for larger dot sizes.

Keywords: GeSn; quantum dot; direct band gap; intersubband nonlinear optics; absorption
coefficients; refractive index changes

1. Introduction

A recent demonstration of direct bandgap GeSn alloys fully compatible with Complementary
Metal Oxide Semiconductor (CMOS) technology [1–4] has generated intensive theoretical and
experimental works aiming to explore their potentiality in the conception and implementation of
optoelectronic devices [5–7]. Accordingly, optically pumped GeSn based laser diode, operating at low
temperature, has already been demonstrated [7–9]. This has created real opportunity towards low-cost
active optical devices monolithically integrable on Si substrates that may provide the missing part to Si
photonic integrated circuits. Furthermore, all-optical switches and modulators are generally made from
GaAs based semiconductor alloys [10,11], being challenging for integration on a Si platform. On the
other hand, the weak nonlinear optical effects in Si based materials prohibits their effective on-chip
integration [12]. Linear and nonlinear optical processes in nanostructures and specially quantum dot
(QD) have generated an ongoing interest due to the possibility for the intersubband optical transition
to occur with large dipole matrix element’s value leading to significant optical nonlinearities [13].
Accordingly, it is important to explore the linear and nonlinear optical processes in CMOS compatible
low dimensional quantum structures. Thus, an emergent research activity has been dedicated to
investigate GeSn based nanostructures, potentially interesting to improve the optoelectronic devices’
performance such as quantum wells [14], nanowires [15,16], nanorods [17], and Quantum dots [18–22].

This work aims to explore numerically, the impact of the QD size and incident light intensity
on the linear and third order nonlinear refractive index changes (RIC) and absorption coefficients
(AC) related to the intersubband optical transitions in GeSn QD. The reported results could serve as a
roadmap for practical design and implementation of far IR optical devices.
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2. Intersubband Transition Energies

The studied structure consists of dome shaped GeSn QD on top of one nm thick GeSn wetting
layer surrounded by Ge matrix [23]. This QD has a typical design of conventional III-V compound [24]
and element IV [25] based self-organized QDs as shown in Figure 1. We have considered the QD aspect
ratio (defined as the dome height (H) to circular base diameter (D) ratio) to be 1/3 with a composition
of Sn being 28%. The choice of this composition has been made based on recent advancements in the
growth of GeSn material with high composition [17,26].
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mass, 𝑟 is the coordinate vector in Cartesian coordinates and 𝑉 is the confining potential barrier. 
The Schrödinger equation has been solved for the electrons in Г and L bands taking into account the 
lattice mismatch induced strain. The calculation procedure and material parameters are detailed 
elsewhere [21,22]. 

Indeed, to warrant explicit involvement of the Г-electrons in the intersubband transition, the p-
like electron energy level in Г-valley should be lower than the ground state electron confined energy 
in the L valley [22,28] as illustrated by the inset of the Figure 2. Since these energy levels are only 
dependent on the QD size, it is important to identify the efficient sizes range that allows satisfying 
this condition. The fulfillment of this requirement limits this study to the practically exploitable 
intersubband transitions. 

Figure 2 shows the evolution the intersubband transition energy (𝐸௣୻ − 𝐸௦୻)  as well as the 
energy difference between the p-like electron energy level in Г-valley and the ground state electron 
energy in the L valley (𝐸௦୐ − 𝐸௣୻) for QD diameters ranging from 16 to 40 nm. The QD sizes, where 
the mentioned condition is not applicable, are indicated by the red box in Figure 2. It is found that 
only QD diameters above 20 nm can be practically useful for efficient intersubband electron 
transitions. Indeed, the condition 𝐸௦୐ − 𝐸௣୻ > 26 meV  avoids the loss of the electrons by thermal 
activation to the confined states in the L band. For the same raison, the upper size limit for the QD is 
also limited by maintaining the intersublevel energies higher than the thermal energy at room 
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The electron’s confined energies and corresponding wave functions are numerically evaluated by
solving the three-dimensional single band effective mass Schrodinger equation in Cartesian coordinates
by finite elements method using COMSOL multiphysics software [27].

The Schrödinger equation is given by:

− }2

2
∇
[

1
m∗(r)

∇ψ(r)
]
+ V(r)ψ(r) = Eψ(r) (1)

where E and ψ are the electron’s energy levels and wave function, m* is the corresponding effective
mass, r is the coordinate vector in Cartesian coordinates and V is the confining potential barrier.
The Schrödinger equation has been solved for the electrons in Г and L bands taking into account
the lattice mismatch induced strain. The calculation procedure and material parameters are detailed
elsewhere [21,22].

Indeed, to warrant explicit involvement of the Г-electrons in the intersubband transition, the
p-like electron energy level in Г-valley should be lower than the ground state electron confined energy
in the L valley [22,28] as illustrated by the inset of the Figure 2. Since these energy levels are only
dependent on the QD size, it is important to identify the efficient sizes range that allows satisfying
this condition. The fulfillment of this requirement limits this study to the practically exploitable
intersubband transitions.

Figure 2 shows the evolution the intersubband transition energy (EΓ
p − EΓ

s ) as well as the energy
difference between the p-like electron energy level in Г-valley and the ground state electron energy in
the L valley (EL

s − EΓ
p) for QD diameters ranging from 16 to 40 nm. The QD sizes, where the mentioned

condition is not applicable, are indicated by the red box in Figure 2. It is found that only QD diameters
above 20 nm can be practically useful for efficient intersubband electron transitions. Indeed, the
condition EL

s − EΓ
p > 26 meV avoids the loss of the electrons by thermal activation to the confined

states in the L band. For the same raison, the upper size limit for the QD is also limited by maintaining
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the intersublevel energies higher than the thermal energy at room temperature. Accordingly, the
interaband transition energies, in this case, can only be tuned between 26 and 78 meV.
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QD diameter.

The inset shows a simplified schematic representation of the QD conduction band at Γ and L
points as well as the electron confined energy. The wetting layer contribution to the schematic band
structure has been omitted for simplicity.

Figure 3 illustrates the s- and p-like Г electron envelope wave functions in the XY plane for
the smallest (D = 20 nm) and the largest (D = 40 nm) QD size. The obtained results follow those
reported for lens-shaped InAs/GaAs quantum dots [29] and indicate good electron confinement over
the exploitable QD sizes range.

The p states, demonstrated to be fully in-plane polarized [30,31], are twofold degenerated due
to the cylindrical symmetry [32,33]. Furthermore, in the case of ideal QD, free of alloy and/or shape
fluctuation having one electron per QD, these states are expected [29] to be oriented towards the
crystallographic directions [110] and

[
110
]
. Consequently, by choosing the X and Y-axis orientation

along these crystallographic directions, the p-like states can be identified as px and py. The two p states
are equivalent (can be generated from each other by a rotation of π/2 around z-axis). A selection rule,
for the in-plane polarized light generated intersubband transition from p to s shell, can be established
depending on the light polarization direction. Indeed, if the light is polarized along X, only the
transition from the px state will be allowed [30,31].
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3. Linear and Nonlinear Optical Properties

The analytical expression of the linear (χ(1)) and third order nonlinear (χ(3)) optical susceptibilities
obtained by considering the QD as a two-level system are given by: [34–36]

χ(1)(ω) =
σ

ε0}

∣∣∣M f i

∣∣∣2(
ω f i −ω− jΓ

) (2)

χ(3)(ω) =
−σ
∣∣∣M f i

∣∣∣2|F|2
ε0}3

(
ω f i −ω− jΓ

) ×
 4

∣∣∣M f i

∣∣∣2((
ω f i −ω

)2
+ Γ2

) −
(

M f f −Mii

)2(
ω f i − jΓ

)(
ω f i −ω− jΓ

)
 (3)

F is the electrical field intensity associated to the incident light intensity by the following relation:
I = 2nr

µc |F|
2. Where nr, µ and c are respectively, the QD materials refractive index, the permeability, and

the free space speed of light. The GeSn refractive index value is derived from those of its constituent
material by linear interpolation (nr = 4.051 for Ge 5.791 for α-Sn [37]).

σ represents the carrier’s density turning out to be the inverse of the QD volume in the present
case assuming one electron per QD [36]. ε0 is the dielectric permittivity of free space, ω is the angular
frequency, ω f i is the transition angular frequency related to the intersubband transition energy by
EΓ

p−EΓ
s

} . Γ is the relaxation rate taken to be Γ = 1
τ , where τ is the relaxation time taken to be 0.1 ps [38].

M f i =
〈

ψ f

∣∣∣ex
∣∣∣ψi

〉
represents the dipole moment for light polarization along X direction and the

subscripts f and i denote the final and initial states referring to the px- and s-like electron states in the
QD’s Γ valley.

The real part of the total susceptibility χ(ω) is associated to the total refractive index change as
follows [31]:

δn(ω)

nr
= Re

(
χ(ω)

2n2
r

)
=

δn(1)(ω)

nr
+

δn(3)(ω)

nr
(4)
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where δn(1)(ω)
nr

and δn(3)(ω)
nr

are respectively the linear and third order nonlinear contribution to the
refractive index change. Their analytical expression is given by the Equations (5) and (6).

δn(1)(ω)

nr
=

σ
∣∣∣M f i

∣∣∣2
2n2

r ε0}
ω f i −ω[(

ω f i −ω
)2

+ Γ2
] (5)

δn(3)(ω, I)
nr

= −µσI
4n3

r ε0}3
|M f i|2[

(ω f i−ω)
2
+Γ2

]2 ×
[

4
(

ω f i −ω
)∣∣∣M f i

∣∣∣2 − (M f f−Mii)
2

ω2
f i+Γ2

{(
ω f i −ω

)
×

[
ω f i

(
ω f i −ω

)
− Γ2

]
− Γ2

(
2ω f i −ω

)}] (6)

The Figure 4, shows the calculated linear, third order nonlinear and total RIC for different QD
sizes (D = 20, 26, 32 and 40 nm) as a function of the photon energy for an incident light intensity of
0.4 MW·cm−2.

Nanomaterials 2019, 9, x FOR PEER REVIEW  5 of 10 

where ఋ௡(భ)(ఠ)௡ೝ  and ఋ௡(య)(ఠ)௡ೝ  are respectively the linear and third order nonlinear contribution to the 

refractive index change. Their analytical expression is given by the Equations (5) and (6). 𝛿𝑛(ଵ)(𝜔)𝑛௥  =  𝜎ห𝑀௙௜หଶ2𝑛௥ଶ𝜀଴ℏ 𝜔௙௜ − 𝜔ቂ൫𝜔௙௜ − 𝜔൯ଶ + Γଶቃ (5) 

ఋ௡(య)(ఠ,ூ)௡ೝ  =  ିఓఙூସ௡ೝయఌబℏయ หெ೑೔หమ
ቂ൫ఠ೑೔ିఠ൯మା୻మቃమ × ቈ4൫𝜔௙௜ − 𝜔൯ห𝑀௙௜หଶ − ൫ெ೑೑ିெ೔೔൯మఠ೑೔మ ା୻మ ൛൫𝜔௙௜ − 𝜔൯ ×
ൣ𝜔௙௜൫𝜔௙௜ − 𝜔൯ − Γଶ൧ − Γଶ(2𝜔௙௜ − 𝜔)ൟ቉   

(6) 

The Figure 4, shows the calculated linear, third order nonlinear and total RIC for different QD 
sizes (D = 20, 26, 32 and 40 nm) as a function of the photon energy for an incident light intensity of 
0.4  MW · cmିଶ. 

 

Figure 4. Calculated linear (a), 3rd order nonlinear (b) and total refractive index changes (RIC) (c) as 
a function of the photon energy for different QD sizes: D = 20 nm (red), D = 26 nm (blue), D = 32 nm 
(green), D = 40 nm (pink). 

The linear RIC is found to decrease with increasing the QD size. Meanwhile, the nonlinear RIC 
slightly increases in magnitude while being opposite in sign to the linear RIC. Consequently, the total 
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consequence of the intersubband transition energy decrease. This result clearly indicates that the total 
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sizes. Additionally, the strong reduction in the total RIC with increasing QD size is mainly due to the 

Figure 4. Calculated linear (a), 3rd order nonlinear (b) and total refractive index changes (RIC) (c) as a
function of the photon energy for different QD sizes: D = 20 nm (red), D = 26 nm (blue), D = 32 nm
(green), D = 40 nm (pink).

The linear RIC is found to decrease with increasing the QD size. Meanwhile, the nonlinear RIC
slightly increases in magnitude while being opposite in sign to the linear RIC. Consequently, the total
RIC is further reduced as the QD size increases when compared to its linear part. The observed shift of
the linear, nonlinear, and total RIC towards lower energy with increasing the QD size is an obvious
consequence of the intersubband transition energy decrease. This result clearly indicates that the total
RIC strongly depends on the QD volume change. Hence, for accurate evaluation of the refraction
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index change, it is recommended to take into account the third order nonlinear term for larger QD
sizes. Additionally, the strong reduction in the total RIC with increasing QD size is mainly due to the
electron density evolving as the inverse of the QD volume. To obtain larger RIC from bigger QD, the
increase of σ can be considered as a viable option within the appropriate incident light intensity.

The optical absorption coefficients related to the intersubband transition are also an important
parameter that needs to be evaluated for this novel QD system. Indeed, the absorption coefficient (AC)
can be numerically driven from the imaginary part of the optical susceptibility ensuing the following
equation [31,32]:

α(ω) = ω

√
µ

εr
Im[ε0χ(ω)] = α(1)(ω) + α(3)(ω, I) (7)

where the linear absorption coefficient takes the following expression:

α(1)(ω) =
ω

}

√
µ

εr

σ
∣∣∣M f i

∣∣∣2Γ[(
ω f i −ω

)2
+ Γ2

] (8)

In addition, the third order nonlinear AC is described by the following equation:

α(3)(ω, I) =
(
−ωσI

2ε0nrc}3

)√
µ
εr
× |M f i|2Γ[

(ω f i−ω)
2
+Γ2

]2

×
[

4
∣∣∣M f i

∣∣∣2 − (M f f−Mii)
2[

3ω2
f i−4ω f iω+(ω2−Γ2

]
ω2

f i+Γ2

] (9)

The linear, third order nonlinear and total AC are plotted in the Figure 5 as a function of the
photon energy for different values of the QD diameter. The maximum peak matches the intersubband
transition energy leading to the observed displacement towards lower energies when the QD size
increases. Furthermore, the linear AC is reduced with increasing QD size inducing the decrease in the
resonance peak’s intensity from 22× 105 m−1 for the smallest QD size down to 2.7× 105 m−1 for the
larger one. In the counterpart, the third order nonlinear AC shows a negative resonance peak intensity
slowly decreasing in absolute value when the QD size increases. Consequently, the variation of the
total AC is strongly influenced by the increase in the QD size [39].
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Figure 5. Calculated linear (solid lines), 3rd order nonlinear (dotted lines) and total absorption
coefficient (AC) (filled area curves) as a function of photon energy for a selection of QD sizes: D = 20 nm
(red), D = 26 nm (blue), D = 32 nm (green), D = 40 nm (pink).
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We notice a relative saturation in the total AC for the 40 nm diameter QD as the third order
nonlinear peaks intensity exceeds half of the linear one. Indeed, the third order nonlinear term’s
magnitude is strongly dependent on the incident light intensity (I). According to Equations (6) and (9),
increasing I results in an increase in both AC and RIC nonlinear terms. Since the linear and third order
nonlinear terms are of opposite sign, the total AC and RIC will consequently be strongly affected. As
bigger QD are more sensitive to the nonlinear contribution, we have numerically evaluated the total
AC and RIC for D = 40 nm with incident light intensity ranging from 0.1 to 0.6 MW·cm−2 (Figure 6).
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The calculation results show that the magnitude of the total absorption coefficient decreases with
increasing the incident light intensity. As shown by the Figure 6a, the resonance peak’s intensity
saturates for I higher than 0.2 MW·cm−2. Similarly, increasing the incident optical intensity leads to an
overall reduction in the total RIC (Figure 6b). Our calculation shows that the optical AC and RIC for
GeSn self-assembled QD appears to be strongly dependent on both size and incident light intensity.
Accordingly, for bigger QD sizes the nonlinear effects are dominant factors, especially for relatively
high incident intensity.

4. Conclusions

In this paper, we have calculated the linear, third order nonlinear and total AC and RIC as a
function of the GeSn QD size and incident light intensity. The QD size has been delimited by the
specific directness parameter that ensures the intersubband transition to occur within the Г band.
The third order nonlinear contribution to the AC and refractive index is found to be strongly dependent
on the QD size and incident light intensity. The results could help in designing and implementing
CMOS compatible optical devices for photonic integrated circuits.
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