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Abstract: The magnetorheology and dispersion stability of bidisperse magnetic particles (BMP)-based
magnetorheological (MR) fluids were improved by applying a novel functional coating composed
of gelatin and graphite oxide (GO) to the surfaces of the micron-sized carbonyl iron (CI) and
nanoparticles Fe3O4. Gelatin acted as a grafting agent to reduce the aggregation and sedimentation of
CI particles and prevent nanoparticles Fe3O4 from oxidation. In addition, a dense GO network on the
surface of gelatin-coated BMP was synthesized by self-assembly to possess a better MR performance
and redispersibility. The rheological properties of MR fluids containing dual-coated BMP were
measured by a rotational rheometer under the presence of magnetic field and their dispersion
stability was examined through sedimentation tests. The results showed that CI@Fe3O4@Gelatin@GO
(CI@Fe3O4@G@GO) particles possessed enhanced MR properties and dispersion stability. In addition,
the nanoparticle-enhancing effects on the dispersion stability of BMP-based MR fluids were
investigated using Monte Carlo simulations.

Keywords: magnetorheological fluids; bidisperse magnetic particles; gelatin; graphite oxide; carbonyl
iron; nanoparticles Fe3O4

1. Introduction

Magnetorheological (MR) fluid, the suspension of soft magnetic particles dispersed in a
nonmagnetic liquid medium, exhibiting a rapid and reversible change from fluid-like to solid-like
state when subjected to the magnetic fields, has been considered to be one of the most promising
intelligent materials [1–6]. MR fluids show a superior rheological behavior under the presence of
magnetic field and have been widely used in many engineering applications including dampers, torque
transducers, clutches, and actuators [7–11]. However, MR fluids still require necessary improvement
in their rheological properties and dispersion stability due to the inherent sedimentation behavior of
micron-sized magnetic particles.

Recently, it was reported that the filling with nanoparticles was an effective method to reduce
the sedimentation of larger particles in MR fluids [12–20]. Leong et al. [21] prepared bidisperse
magnetic particles (BMP) composed of γ-Fe2O3 nanoparticles with an average size of 9 nm and
carbonyl iron (CI) particles to investigate the rheological properties and sedimentation rate of the MR
fluids. Wereley et al. [22] attemped to find an optimal composition of micron-sized and nanosized Fe
particles to provide the best combination of high yield stress and low sedimentation rate for bidisperse
MR fluids. Patel [23] then studied the mechanism of structure formation in magnetic nanofluid based
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MR fluids and indicated that nanofluid-based MR fluids possessed better stability compared with
the commercially available MR fluids. When the external magnetic field is present, the micron-sized
particles become polarized and gathered in chains or clusters owing to dipole–dipole interaction [24].
Simultaneously, nanoparticles attached at the end of CI chains and filled into the microcavities formed
by CI particles can influence the interactions among CI particles and reduce the aggregation of larger
particles for BMP-based MR fluids.

Nevertheless, the nanoparticles Fe3O4 are susceptible to be oxidized at elevated temperatures
and transformed into α-Fe2O3 with better thermal stability losing their magnetic properties. Thus,
the core-shell structures composed of magnetic particle and polymer have been prepared, in which the
various polymers including polystyrene (PS), polyaniline (PANI), and silica were introduced to improve
the stability of magnetic particles [25–28]. Unfortunately, as a result of the coating of non-magnetic
polymer, the magnetic interactions between magnetic particles are diminished, which inevitably affects
the MR properties.

Consequently, we constructed a dense graphite oxide (GO) nest on the surface of micron-sized
CI and nanosized Fe3O4 particles using gelatin as a grafting agent, which is also called
CI@Fe3O4@Gelatin@GO (CI@Fe3O4@G@GO) particles. Gelatin is obtained by alkali denaturation of
collagen. The alkaline denaturation process targets the –NH2 groups of asparagines and glutamine,
and hydrolyzes them into –COOH, hence converting these residues into aspartate and glutamate.
This results in the alkaline-processed gelatin possessing a high proportion of –COOH thereby rendering
it negatively charged and lowering its isoelectric point. Subsequently, the core-shell structure
morphology and composition analysis of CI@Gelatin (CI@G), CI@Fe3O4@Gelatin (CI@Fe3O4@G),
and CI@Fe3O4@G@GO particles were confirmed from scanning electron microscope (SEM), X-ray
energy dispersive (XRD), and Fourier transform infrared (FT-IR) spectra. In addition, MR
properties (shear stress, storage modulus, and yield stress) and dispersion stability for modified
particle-based MR fluids were examined and compared to those of pure CI particles. Additionally,
the nanoparticle-enhancing effects on the dispersion stability for BMP-based MR fluids were illustrated.

2. Materials and Methods

2.1. Synthesis of Gelatin Coated CI@Fe3O4 (CI@Fe3O4@G) Particles

At first, the grafting agent (2.5 g), gelatin, was dissolved in 25 mL of deionized water and heated
to 55 ◦C for 30 min. Four grams of micron CI particles (Fe% > 98%, average diameter = 3.5 µm,
density = 7.9 g/cm3), nanoscale Fe3O4 particles (average diameter = 20 nm) and 0.2 g of sodium
chloride were successively added to the mixture solution. The nanoscale Fe3O4 particles were prepared
by the classical co-precipitation method [29]. The sulfate solution containing Fe3+ and Fe2+ was added
into an alkaline solution, which was continuously stirred for 30 min at pH 10.5 to allow nanocrystallites
growing in size. The nanocrystallites were magnetically separated and washed several times with
deionized water to remove water-soluble impurities, and dried in a vacuum oven at 55 ◦C for 12 h.
Herein, the sodium chloride in the solution played a role as a stabilizing agent to maintain the balance
of interaction force between CI and nanoscale Fe3O4 particles.

The resulting reaction mixture was treated with ultrasonic oscillation for 6 h, so the surface-modified
CI and Fe3O4 (CI@Fe3O4@G) particles were obtained. The products were then separated by a strong
magnet and washed with deionized water in order to remove excess gelatin. The appropriate mass
fraction of nanoparticles Fe3O4 in the preparation process is given in the next section.

2.2. Fabrication of the GO-Nest Wrapped CI@Fe3O4@G (CI@Fe3O4@G@GO) Particles

GO was prapared using a modified Hummer’s process [30,31]. The graphite, NaNO3, H2SO4,
MnSO4·H2O, KMnO4, H2O2, and FeC2O4·2H2O were directly employed without further treatment.
First, 2 g of graphite and 1 g of NaNO3 were placed into a 250 mL flask, followed by the dropwise
addition of 25 mL of H2SO4 while stirring in an ice-bath. Three grams of KMnO4 were then added
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to the mixture, which was continuously stirred to the room temperature and diluted with 100 mL of
deionized water, followed by the addition of 30% H2O2 solution to remove excess KMnO4. The final
GO materials were obtained after centrifuging and washing (with deionized water), and then dried at
70 ◦C for 24 h.

Secondly, 2 g of GO was added to the previously synthesized solution containing CI@Fe3O4@G
particles and deionized water. The mixture was stirred for 1 h at 55 ◦C. After ultrasonic oscillation
for 10 h, the surface of CI@Fe3O4@G particles were wrapped with GO nest. Furthermore,
the CI@Fe3O4@G@GO paticles were separated by a permanent magnet and washed with deionized
water until the supernatant liquid became colorless. A schematic diagram of the CI@Fe3O4@G@GO
particles steps is provided in Figure 1.
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Figure 1. Schematic diagram of the preparation process for CI@Fe3O4@G@GO magnetic particles.

2.3. Characterization Methods

In this work, SEM images of the particles morphologies were taken on a JSM-7500F electron
microscope (JEOL Ltd., Co., Tokyo, Japan) at an acceleration voltage of 5.0 kV. X-ray EDS was also
performed using an attached EDAX (couple with JSM-7500F) spectrometer (JEOL Ltd., Co., Tokyo,
Japan) for the elemental analysis.

FT-IR spectra of the dried CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles was obtained on an
FT-IR iS50 spectrometer (Thermo Fisher Scientific Co., Waltham, MA, USA) in the range of 4000–500 cm−1.

XRD for the dried magnetic particles of pure CI, pure Fe3O4, CI@Fe3O4@G, and CI@Fe3O4@G@GO
was recorded on a TTR-III X-ray diffractor (Rigaku, Tokey, Japan) using a Cu Kα tube and an Ni filter
in the 2θ range of 20–90◦ with an interval of 0.02◦.

Magnetorheological behaviors of the modified particle-based MR fluids were investigated with
a rotational magneto-rheometer MCR-302 MRD (Anton Paar, Graz, Austria) at room temperature.
In order to prepare the MR fluid, synthesized CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO as well
as pure CI particles were dispersed in the mixture of polyolefins synthetic oil, which were stirred for
40 min at 50 ◦C, respectively. In addition, the dispersion stability of MR fluid was tested by qualitative
observation of sedimentation at room temperature. In this method, the sedimentation ratio β can be
defined as

β =
H − h

H
× 100% (1)

where H and h represent the initial and residual heights of MR fluids, respectively.
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3. Results and Discussion

3.1. Nanoparticle-Enhancing Effect

For magneto-controllable MR fluids, it is widely recognized that the dispersion stability depended
on their interior microstructures. Figure 2 shows the SEM images of microstructure morphology for
micron-sized CI and nanoscale Fe3O4 particles, respectively, which exhibits a very smooth surface
with a regular shape. However, we lack a complete explanation of the formation mechanism
for BMP with different sizes, magnetic properties, and mechanical performance. In this section,
the microstructure-based machanism of the nanoparticle-enhancing effect was illustrated in BMP-based
MR fluids.
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Figure 2. SEM images of microstructure morphology: (a) pure micron-sized CI particles; (b) pure
nanoparticles Fe3O4.

Generally, in the BMP-based MR fluids, due to dipolar interactions, Fe3O4 particles are attached
to CI chains or filled into the microcavities formed by larger particles, which significantly influences
the interactions among CI particles. Magnetic force can be described by the interaction of induced
dipoles. The magnetic moment of a magnetic particle is given by

m =
4
3
πR3χH (2)

H is the applied magnetic strength, and R and χ are the radius and magnetic susceptibility of the
particle. The magnetostatic energy EH can be expressed as

EH = −m× H (3)

When a particle marked as i is magnetized as a dipole, it will generate a magnetic field in the
surroundings:

Hm i =
µ0

4πr3
0

[
3(mi × r0)× r0

r2 −mi

]
(4)

The magnetic potential energy Emimj between dipoles i and j can be expressed as

Em i m j =
µ0

4πr3
ij

[
3(mi × r0)

(
mj × r0

)
r2 + mi ×mj

]
(5)

where rij is the position vector from dipole j to dipole i, and r0 is a unit vector of rij. The interparticle
magnetic force between dipoles i and j is obtained as

Fm i m j =
3µ0

4πr4
ij

[
−3(mi × r0)

(
mj × r0

)
+ mi ×mj

]
(6)
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Therefore, the sum of magnetic forces exerted by the surrounding magnetic particles can be
given by

Fm = ∑
j 6=i

3µ0

4πr4
ij

[
−3(mi × r0)

(
mj × r0

)
+ mi ×mj

]
(7)

The van der Waals force for dissimilar particles of radius R1 and R2 can be calculated by
Equations (8) and (9) [23]:

Fv = −A212

6h
R1R2

R1 + R2
(8)

A212 =

(
A

1
2
1 − A

1
2
2

)
(9)

A is the Hamaker constant. CI and Fe3O4 particles are denoted by subscripts 1 and 2, respectively,
The subscript 212 represents the orderly distribution of CI and Fe3O4 particles in the MR fluids.
Herein, A1 = 7.24 × 10−20 J and A2 = 1.0 × 10−19 J. A212 is an effective Hamaker constant and taken as
2.22 × 10−21 J. In addition, it was found that the magnitude of van der Waals force generally increased
with the decrease of intermolecular distance h.

In addition, Brownian motion force has an important effect on preventing the aggregation of
micron-sized particles, which can be obtained by Equation (10) [32]:

FB = ζ

√
12πRaµkBT

∆t
(10)

where ζ is a random number of Gaussian distribution, Ra is the mean radius of BMP, kB is Boltzmann
constant, µ is dynamic viscosity, T is thermodynamic temperature, and ∆t is time step. These forces
are major factors affecting the dispersion stability of MR fluids.

In this work, nanoparticles Fe3O4 were applied as a form of hybrids with CI particles to prepare
MR fluids. For the BMP-based MR fluids, the mass fraction of nanoparticles is denoted as w.
In order to understand the microstructure-based mechanism of the nanoparticle-enhancing effect,
the microstructure in a three-dimensional (3D) case is studied by Monte Carlo simulations [33].

For magnetic particle i, the initial position φt
i is defined as follows:

φt
i =

(
xt

i , yt
i , zt

i
)

(11)

After initialization, the corresponding positions are subjected to multi-interation in the movement
process:

xt+1
i = xt

i + (R1 − 0.5)∆ (12)

yt+1
i = yt

i + (R2 − 0.5)∆ (13)

zt+1
i = zt

i + (R3 − 0.5)∆ (14)

where R is a random number, and ∆ is the maximum displacement allowed. The optimal value can be
obtained by [34] {

βt+1 = λβt + θ(modM) t = 0, 1, . . . , n
R = βt+1

M
(15)

where λ, θ, and M represent the multiplier, increment, and modulus of the Monte Carlo, respectively.
Therefore, the position Φt of magnetic particle group is determined as

Φt =
(
φt

1, φt
2, . . . , φt

n
)

(16)
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The random probability Pi of position updating depends on the change of particle energy
(∆E = Et

+1I − Et
I), and their relationship can be given as

Pi =

{
exp

(
−∆E

kT

)
∆E > 0

1 ∆E < 0
(17)

In MR fluids, the energy in magnetic particles includes gravity gradient energy, kinetic energy,
magnetostatic energy, magnetic potential energy, and van der Waals force energy. However, the gravity
gradient energy and kinetic energy have little change during the movement process, and van der Waals
force energy can be neglected. Thereby, the change in energy is mainly influenced by magnetostatic
energy and magnetic potential energy, which can be obtained by Equations (3) and (5), respectively.

In this simulation, a cubic cell with edge length 50 µm is considered for the 3D case. The microstructure
diagram with different mass fraction of nanoparticles are presented in Figure 3. When w = 0, the CI
particles form chain-like structures along the direction of the external magnetic field. However, larger
soft magnetic materials are rather easy to be magnetized and aggregated, thus resulting in rapid and
serious sedimentation. For the condition of w = 0.05, namely there is a small number of nanoparticles
in the total particles, the main microstructures are also the chain-like structures formed by CI particles.
Meanwhile, the nanoparticles are mainly separated from each other and attached to the CI chains
or filled into the microcavities of CI particles. When w increases to 0.1, some nanoparticles form
short chain-like structures filling the interspace among CI chains. Thus, the dipolar interactions and
van der Waals forces between magnetic particles are enhanced, which improves the sedimentation
behaviors of MR fluids. Increasing w to 0.2, nanoparticles play a considerable role contributing to the
whole structure. The nanoparticles are aggregated to form long chain-like structures and filled around
the CI chains. However, the excess nanoparticles are dispersed in the carrier liquid, resulting in the
augmentation of zero-field viscosity and decrease of magnetic properties for MR fluids.
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Therefore, the microstructure mechanism reveals that magneto-induced short chain-like stuctures
formed by nanoparticles contribute to the dispersion-enhancing effect. When the mass fraction of
nanoparticles is about 10%, the BMP-based MR fluid possesses better dispersion stability.

3.2. Particle Morphology and Chemical Composition

Figure 4 displays the SEM images of modified particle morphology. The spherical CI@G and
CI@Fe3O4@G particles (Figure 4a,b) exhibits a clear core-shell structure with gelatin on the surface,
and an obvious difference on the surface of CI@G and CI@Fe3O4@G is observed due to the filling
of nanoparticles. Figure 4c,d show the surface morphology and EDS analysis of CI@Fe3O4@G@GO
particles, respectively. It can be found that modification with GO introduced chemical functional
groups to the CI and Fe3O4 surfaces, which resulted in quite rough surfaces, and the interspace among
the particles was reduced due to the wrapping of GO nest. Additionally, typical EDS spectra indicated
strong intensities of organic elements carbon, nitrogen, and oxygen, originating from gelatin and GO.
Considering that the CI@Fe3O4@G@GO particles have been washed with deionized water to remove
excess GO and gelatin, we confirmed the successful coating of BMP with gelatin and GO.
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The functional groups in CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles were investigated
by FT-IR spectroscopy (Figure 5). The U-shaped polypeptide chain of gelatin exhibits an extensional
planar structure and its –C=O and –C–N groups are perpendicular to the chain axis. In the spectrum
of CI@G, CI@Fe3O4@G, and CI@Fe3O4@G, there were several common absorption peaks: C=O
(1640 cm−1), C–H (1247 cm−1), C–N (1053 cm−1), and Fe–O (556 cm−1). This confirmed the presence of
gelatin functional groups on the surface of BMP. Furthermore, the spectra of CI@G and CI@Fe3O4@G
particles showed double absorption peaks of primary amine located at 3332 cm−1 and 3429 cm−1,
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which indicated the existence of the –NH2 groups. The characteristic C=O peak in the spectra of
CI@Fe3O4@G@GO was strengthened compared to the other particles on account of the increase in
quantity. In order to prove the role of gelatin as a grafting agent, an additional experiment without
adding gelatin was also made. Unfortunately, there was not any wrapped GO layer on the surface of
BMP, which indicates that the gelatin plays a crucial role wrapping BMP with GO nests. We assumed
that, in an aqueous system, CI and Fe3O4 particles were coordinated to water molecules that shared
their electron pairs with the iron atoms, and resulted in a surface covered by –OH groups. Furthermore,
–COOH groups in gelatin had a better adsorption on the –OH groups due to esterification reaction.
After modifying the CI@Fe3O4@G particles in a bath, the epoxide group on the surface of GO reacted
with –NH2 in the gelatin. Therefore, a mass of the GO densely covered the surface, which led to the
disappearance of double absorption peaks of –NH2 in the spectra of CI@Fe3O4@G@GO particles.
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XRD was employed to investigate the crystalline structures of modified particles. The characteristic
diffractions of the pure CI, CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles were shown in Figure 6.
The characteristic peaks of CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles were the same as the
unmodified pure CI particles, which showed that the contents of GO did not affect the inherent crystalline
characteristics of CI particles.

Nanomaterials 2018, 8, x 8 of 13 

 

CI@Fe3O4@G@GO was strengthened compared to the other particles on account of the increase in 
quantity. In order to prove the role of gelatin as a grafting agent, an additional experiment without 
adding gelatin was also made. Unfortunately, there was not any wrapped GO layer on the surface of 
BMP, which indicates that the gelatin plays a crucial role wrapping BMP with GO nests. We assumed 
that, in an aqueous system, CI and Fe3O4 particles were coordinated to water molecules that shared 
their electron pairs with the iron atoms, and resulted in a surface covered by –OH groups. 
Furthermore, –COOH groups in gelatin had a better adsorption on the –OH groups due to 
esterification reaction. After modifying the CI@Fe3O4@G particles in a bath, the epoxide group on the 
surface of GO reacted with –NH2 in the gelatin. Therefore, a mass of the GO densely covered the 
surface, which led to the disappearance of double absorption peaks of –NH2 in the spectra of 
CI@Fe3O4@G@GO particles. 

 
Figure 5. FT-IR spectra of CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles. 

XRD was employed to investigate the crystalline structures of modified particles. The 
characteristic diffractions of the pure CI, CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles were 
shown in Figure 6. The characteristic peaks of CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles 
were the same as the unmodified pure CI particles, which showed that the contents of GO did not 
affect the inherent crystalline characteristics of CI particles. 

 

Figure 6. XRD spectra of pure CI, CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles. Figure 6. XRD spectra of pure CI, CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles.



Nanomaterials 2018, 8, 714 9 of 13

3.3. MR Behavior and Dispersion Stability

The MR fluid behaviors were characterized at different magnetic fields ranging from 0 to
258 kA/m under a rotational test. For a typical MR behavior, shear stress was measured on a log–log
scale applying different external magnetic fields. As shown in Figure 7, the shear stress of MR fluids
containing CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles increased with the increasing shear
rate. These steady behaviors were induced based on a solid-like chain formation in which the magnetic
moments of the particles were parallel to the magnetic field direction. When the magnetic field was
present, the MR fluids with CI@Fe3O4@G@GO particles displayed relatively higher shear stress than
CI@G and CI@Fe3O4@G particles due to the increased friction caused by the rough coating of GO
nest. As expected, the shear stress achieved highly depended on the applied magnetic fields, and all
shear stress curves represented a wide plateau range over the whole region of shear rate due to the
strong dipole–dipole interactions among the adjacent magnetic particles. On the other hand, when
the magnetic field was absent, the disorganized Brownian motion performed by BMP reduced the
flocculation between the magnetic particles and led to the decrease on the shear stress of CI@Fe3O4@G
and CI@Fe3O4@G@GO particles.
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Figure 8 showed the relationship between storage modulus and magnetic field strengths applied
for MR fluids. It is found that gelatin-coated layers of particles reduced magnetic response time
compared with that of the pure CI particles, in which the response time was evaluated by the transition
point where the slope of storage modulus significantly chanced. However, the response velocity
of CI@Fe3O4@G@GO particles became slightly faster than that of gelatin-coated particles. As the
magnetic field increased, the storage modulus of CI@G, CI@Fe3O4@G, and CI@Fe3O4@G@GO particles
rapidly increased compared with the slope of the pure CI. It may be due to the fact that applied
magnetic fields were disturbed by the gelatin-coated layer on particles. In addition, it was observed
that the storage modulus of CI@Fe3O4@G@GO was always higher than that of CI@G and CI@Fe3O4@G
over the entire magnetic field range. This suggests that the MR fluids containing CI@Fe3O4@G@GO
possessed a solid-like behavior, indicating more remarkable elastic properties.
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In addition, the dynamic yield stress as a function of magnetic fields was shown in Figure 9.
The dynamic yield stress of all particles indicated an increasing tendency with increasing applied
magnetic fields. CI@Fe3O4@G@GO particles showed the highest values of yield stress. On the other
hand, the CI@G particles displayed slightly weaker dynamic yield stresses than pure CI particles for
all magnetic field strengths applied.
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Furthermore, the sedimentation observation of MR fluids containing pure CI, CI@G, CI@Fe3O4@G,
and CI@Fe3O4@G@GO particles was examined. Figure 10 showed the recorded sedimentation
ratio as a function of time. Apparently, compared with pure CI particles, CI@G, CI@Fe3O4@G,
and CI@Fe3O4@G@GO particles exhibited slow sedimentation velocity during the initial 34 days
and then tended to become steady at 17.2%, 10.3%, and 6.58%. The lower the sedimentation ratio is,
the better the dispersion stability is. It is obvious that dual-coated layers and nanoparticles significantly
affect the dispersion stability of MR fluids, and the sedimentation ratio for CI@Fe3O4@G@GO particles
is lower than 7.00%, which is superior to many MR fluids in the literature [35,36].
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CI@Fe3O4@G, and CI@Fe3O4@G@GO particles.

In conclusion, under the effect of magnetic field, Fe3O4 particles attached at the end of CI chains
and filled into the microcavities formed by larger particles influence the interactions among CI particles.
However, the nanoparticles Fe3O4 are susceptible to be oxidized at elevated temperatures losing their
magnetic properties. Consequently, as a grafting agent, gelatin layers can restrict the oxidation of
nanoparticles and reduce the attraction among the adjacent particles due to the increased lubrication
of particle surfaces to improve the dispersion stability of magnetic particles. Nevertheless, as a result
of the coating of the non-magnetic layer, the magnetic interactions between magnetic particles are
diminished, which inevitably leads to the decrease of MR properties.

After being wrapped with GO nest, considerably coarse surfaces may be produced. When the
external magnetic field is present, these coarse particles will inevitably suffer interaction, hence
absorbed GO nest can produce flocculation by bridging the gap between the adjacent CI particles,
which enhances the MR properties. A homogeneous redispersion of the MR fluid containing
CI@Fe3O4@G@GO particles could be obtained easily by momentary mild shaking and allowing
sufficient time for the particles to settle. Therefore, compared with other particles, CI@Fe3O4@G@GO
particles possess enhanced dispersion stability and easy redispersion.

4. Conclusions

In this work, dual-coated BMP with a dense GO network was fabricated using gelatin as the
grafting agent. The core-shell structure morphology and composition analysis were confirmed
from SEM, FT-IR, and XRD spectra. Rheological properties of MR fluids containing dual-coated
BMP were measured by a rotational rheometer under the presence of magnetic field and their
dispersion stability was examined through sedimentation tests. The CI@Fe3O4@G@GO particles
indicate better MR properties than that of pure CI, CI@G, and CI@Fe3O4@G particles. Simultaneously,
MR fluids containing CI@Fe3O4@G@GO particles exhibit better dispersion stability and redispersibility.
The proposed MR fluids containing CI@Fe3O4@G@GO particles may serve for future research in
many engineering applications. In addition, the nanoparticle-enhancing effects on the dispersion
stability of BMP-based MR fluids were studied using Monte Carlo simulations. When the mass fraction
of nanoparticles is about 10%, some nanoparticles will form short chain-like structures or become
attached to the end of CI chains, filling the interspace among CI chains, strongly increasing the dipolar
interactions and van der Waals forces between BMP, thus enhancing its dispersion stability.
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