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Abstract: Compared to traditional cancer treatments, drug/gene delivery is an advanced, safe, and
efficient method. Nanoparticles are widely used as nanocarriers in a drug/gene delivery system
due to their long circulation time and low multi-drug resistance. In particular, lanthanide-doped
upconversion nanoparticles (UCNPs) that can emit UV and visible light by near-infrared (NIR)
upconversion demonstrated more efficient and safer drug/gene delivery. Because of the low
penetration depth of UV and visible light, a photoinduced reaction such as photocleavage or
photoisomerization has proven restrictive. However, NIR light has high tissue penetration depth
and stimulates the photoinduced reaction through UV and visible emissions from lanthanide-doped
UCNPs. This review discusses the optical properties of UCNPs that are useful in bioapplications and
drug/gene delivery systems using the UCNPs as a photoreaction inducer.
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1. Introduction

Cancer is one of the major diseases that threatens human health worldwide. Many researchers
have developed various cancer treatments such as surgery, chemotherapy, and radiotherapy. However,
these methods have limitations. Because cancer lesions and normal tissue are not completely
differentiated during surgery, large complex tissues are removed. Chemotherapy works on the whole
body in addition to the cancerous tissues and results in low tumor-specific targeting, severe side effects,
drug dependence, and multi-drug resistance (MDR) [1–4]. Radiotherapy works on a specific region
with normal tissues and results in skin damage, cancer recurrence, cell mutation, dose-dependent
side effects, and cardiovascular problems [5–7]. Therefore, the development of more efficient and
safe methods to remove cancerous tissues is essential for improving cancer treatments. Recently,
drug/gene delivery systems have been suggested as an alternative to conventional cancer treatments.
In particular, nanoparticles used as drug/gene carriers are attracting attention due to advantages
such as their high tumor-specific targeting with low side effects and increased loading capacity.
Nanoparticles tend to accumulate in tumor lesions through the relatively leaky tumor vasculature,
and this accumulation is associated with the enhanced permeability and retention (EPR) effect [8–11].
The large specific surface area of nanoparticles and mesoporous/hollow nanostructures increases
the amount of drug/gene loading. To exploit these advantages, many researchers have designed
nanocarriers such as liposomes [12–15], polymeric micelles [16–18], polymeric nanoparticles [19–21],
carbon nanotubes [22,23], reduced graphene oxides [24–26], gold nanoparticles [27–29], magnetic
nanoparticles [30–32], and lanthanide-doped upconversion nanoparticles (UCNPs) [33–38].

In this review, we discuss drug/gene delivery systems that use lanthanide-doped UCNPs.
The unique and fascinating optical properties that convert near-infrared (NIR) light to visible and
UV light allow UCNPs to be used as more efficient nanocarrier materials in drug/gene delivery
systems. This drug/gene delivery system is based on photoinduced reactions such as photocleavage
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and photoisomerization. Photoinduced delivery systems enhance the efficacy of spatial and temporal
control of drug/gene release and minimize normal cell death, side effects, and the tissue damage.

2. Lanthanide-Doped UCNPs

Photoinduced drug/gene delivery systems use photoreactions to control drug release and gene
expression, mainly through UV light sources. However, the UV region is not only harmful to tissues
and cells, but also has a disadvantage of low tissue penetration depth due to its absorption by
biological substances (e.g., protein, hemoglobin, and melanin) [39,40]. Unlike UV light, NIR light
exhibit the deep penetration depth due to low absorption by biological substances and minimizes
photodamage to tissues and cells [39,41]. In order to use NIR light for photoinduced drug/gene
delivery, an anti-Stokes shifting material that emits UV light by NIR excitation is required. Among the
various materials, UCNPs have been proposed as a strong candidate. Upconversion is the process by
which multiple lower energy photons are converted to higher energy photons and are emitted [42].
Various lanthanide-doped UCNPs have been extensively investigated, and ytterbium (Yb3+), erbium
(Er3+), thulium (Tm3+), and holmium (Ho3+) are well-known lanthanide dopants in UCNPs (see
Figure 1a) [43]. Yb3+ ions are usually used as a sensitizer for absorbing NIR photons, and Er3+, Tm3+,
and Ho3+ ions are used as an activator to emit upconverted luminescence (i.e., visible and UV). In
addition, because lanthanide ions produce long-lived luminescence emission through the forbidden
4f-4f transition between real intermediate energy states, upconversion is much more efficient than
other anti-Stokes shift phenomena (e.g., two-photon absorption and second harmonic generation).
Moreover, compact and inexpensive continuous wave (CW) lasers can be used as an excitation source
for upconversion, while other anti-Stokes shifting materials require high power pulsed lasers [44,45].
Since energy transfer between the energy levels of lanthanide ions is possible, the choice of UCNP host
material doped with lanthanide elements has a significant effect on the upconversion mechanism and
its efficiency. The most widely used host material for lanthanide-mediated upconversion is sodium
yttrium fluoride (NaYF4) because of its relatively low phonon energy (400 cm−1), which minimizes
non-radiative relaxation decay [46,47]. Yb3+ and Er3+ co-doped UCNPs are primarily used as probes
for in vitro and in vivo bioimaging [48–50]. The 2H11/2, 4S3/2 → 4I15/2, and 4F9/2 → 4I15/2 transitions
in trivalent Er3+ emit the green and red upconverted luminescence (see Figure 1b) [51]. Green emission
from Yb3+ and Er3+ co-doped UCNPs shows relatively high quantum yield compared to UCNPs
with other lanthanide elements [52–54]. Yb3+ and Tm3+ co-doped UCNPs are primarily used as UV
sources for photoinduced reactions. The 1I6 → 3H6, 1D2 → 3H6, 1D2 → 3F4, and 1G4 → 3H6 transition
in trivalent Tm3+ emit the UV and blue upconverted luminescence (see Figure 1b) [51]. Thus, Yb3+

and Tm3+ co-doped UCNPs can induce photocleavage and photoisomerization of photosensitive
compounds for drug/gene delivery systems.
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Figure 1. (a) Energy level diagrams of Tm3+, Yb3+, Er3+, and Ho3+ ions, illustrating the upconversion 
mechanism in lanthanide-doped upconversion nanoparticles (UCNPs) [43]. (b) Photographs of 
upconversion emission excited by a 980 nm laser [51]. Reproduced with permission from [43]. 
Copyright MDPI, 2017. Reproduced with permission from [51]. Copyright IVYSPRING, 2013. 

Figure 2a shows the difference in the penetration depths of UV and NIR light through pork skin 
placed on top of a solution containing UCNPs [55]. Figure 2b shows the penetration difference 
between UV and NIR lasers used to excite the fluorescein (FITC) and UCNPs, respectively. Under 
UV irradiation, the emission intensity from FITC decreased when the thickness of chicken breast 
increased, but the fluorescence signal from FITC was not observed when the thickness of chicken 
breast reached 6 mm. Under NIR irradiation, however, enough photons are transmitted to the UCNPs 
to emit green luminescence even though the thickness of the chicken is 10 mm [56]. Also, the 
penetration depth of NIR light for upconversion imaging was demonstrated to be 1.25 inches (3.2 cm) 
at the pork tissue [57]. Therefore, UCNPs can be used as effective UV sources that can cause 
photoinduced reactions under NIR irradiation with high penetration depth and can be used as 
nanocarriers for drug/gene delivery. 

Figure 1. (a) Energy level diagrams of Tm3+, Yb3+, Er3+, and Ho3+ ions, illustrating the upconversion
mechanism in lanthanide-doped upconversion nanoparticles (UCNPs) [43]. (b) Photographs of
upconversion emission excited by a 980 nm laser [51]. Reproduced with permission from [43].
Copyright MDPI, 2017. Reproduced with permission from [51]. Copyright IVYSPRING, 2013.

Figure 2a shows the difference in the penetration depths of UV and NIR light through pork
skin placed on top of a solution containing UCNPs [55]. Figure 2b shows the penetration difference
between UV and NIR lasers used to excite the fluorescein (FITC) and UCNPs, respectively. Under UV
irradiation, the emission intensity from FITC decreased when the thickness of chicken breast increased,
but the fluorescence signal from FITC was not observed when the thickness of chicken breast reached
6 mm. Under NIR irradiation, however, enough photons are transmitted to the UCNPs to emit green
luminescence even though the thickness of the chicken is 10 mm [56]. Also, the penetration depth of
NIR light for upconversion imaging was demonstrated to be 1.25 inches (3.2 cm) at the pork tissue [57].
Therefore, UCNPs can be used as effective UV sources that can cause photoinduced reactions under
NIR irradiation with high penetration depth and can be used as nanocarriers for drug/gene delivery.
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Figure 2. (a) Illustration of the penetration depths for UV and NIR light [55]. (b) Photographs of tissue 
penetration for NIR and UV light. Slices of chicken breast with various thicknesses (2 mm–10 mm) 
were placed between the laser source and the glass cuvette containing the UCNP-labeled hydrogel 
and fluorescein (FITC)-labeled hydrogel, respectively [56]. Reproduced with permission from [55]. 
Copyright The Royal Society of Chemistry, 2015. Reproduced with permission from [56]. Copyright 
Elsevier, 2017. 

3. Drug/Gene Delivery Using Photocleavage 

In drug/gene delivery, the photocleavage reaction of small molecules or polymer backbones is 
an attractive method to trigger drug release and gene expression. The photocleavage reaction has 
three methods, namely (1) the direct cleavage of the bond between the molecule and the carrier 
[37,58–60]; (2) a change in the charge on the carrier surface used to induce electrostatic repulsion 
between the molecules and the carrier [61,62]; and (3) the destruction of the carrier itself [63]. 

3.1. Direct Cleavage of the Bond between the Molecule and the Carrier 

The photosensitive compounds are modified to bind the drug/gene to the carrier through a 
variety of molecular interactions, thus undergoing irreversible deformation [37,58,60,64,65]. The most 
commonly used photosensitive molecules are coumarinyl and o-nitrobenzyl esters. They serve as 
linkers that bind the drug/gene to the carriers and are broken when exposed to UV or visible light. 
These photoreactive molecules can also be directly destroyed by two-photon absorption of NIR light 
[66,67]. However, the molecules have a small two-photon absorption cross-section and slow reaction 
rate [68]. Thus, this photoreaction involving two-photon absorption requires a higher NIR laser 
power and longer reaction time than a UV (or visible) source. Due to the NIR excitation and efficient 
upconverted UV and visible light emission, the UCNPs can be used to induce photocleavable 
reactions using NIR light. When combined with the high penetration depth of NIR light, the low 
energy requirement of the UCNPs, which can be used with inexpensive CW lasers instead of high 

Figure 2. (a) Illustration of the penetration depths for UV and NIR light [55]. (b) Photographs of tissue
penetration for NIR and UV light. Slices of chicken breast with various thicknesses (2 mm–10 mm)
were placed between the laser source and the glass cuvette containing the UCNP-labeled hydrogel
and fluorescein (FITC)-labeled hydrogel, respectively [56]. Reproduced with permission from [55].
Copyright The Royal Society of Chemistry, 2015. Reproduced with permission from [56]. Copyright
Elsevier, 2017.

3. Drug/Gene Delivery Using Photocleavage

In drug/gene delivery, the photocleavage reaction of small molecules or polymer backbones is an
attractive method to trigger drug release and gene expression. The photocleavage reaction has three
methods, namely (1) the direct cleavage of the bond between the molecule and the carrier [37,58–60];
(2) a change in the charge on the carrier surface used to induce electrostatic repulsion between the
molecules and the carrier [61,62]; and (3) the destruction of the carrier itself [63].

3.1. Direct Cleavage of the Bond between the Molecule and the Carrier

The photosensitive compounds are modified to bind the drug/gene to the carrier through a
variety of molecular interactions, thus undergoing irreversible deformation [37,58,60,64,65]. The
most commonly used photosensitive molecules are coumarinyl and o-nitrobenzyl esters. They serve
as linkers that bind the drug/gene to the carriers and are broken when exposed to UV or visible
light. These photoreactive molecules can also be directly destroyed by two-photon absorption of NIR
light [66,67]. However, the molecules have a small two-photon absorption cross-section and slow
reaction rate [68]. Thus, this photoreaction involving two-photon absorption requires a higher NIR
laser power and longer reaction time than a UV (or visible) source. Due to the NIR excitation and
efficient upconverted UV and visible light emission, the UCNPs can be used to induce photocleavable
reactions using NIR light. When combined with the high penetration depth of NIR light, the low
energy requirement of the UCNPs, which can be used with inexpensive CW lasers instead of high



Nanomaterials 2018, 8, 511 5 of 15

energy pulsed lasers, also has the advantage of increasing the delivery efficiency [69]. In 2015, He
et al. reported that the UCNPs could induce photoreactive drug delivery under ultralow-intensity
NIR irradiation [70]. The authors used the photocleavable reaction of the Ru complex to release the
drug from the carrier (see Figure 3a). Since the absorption (~453 nm) of the Ru complex overlaps with
the blue emission from the UCNPs, the upconverted light by NIR excitation induces photocleavage
of the Ru complex [71]. The mesoporous silica shell of the UCNPs (UCNP@mSiO2) was used as the
drug carrier, and the Ru complex was attached to the pores to serve as a molecular valve. Without
NIR irradiation, the release of doxorubicin from UCNP@mSiO2 was not detected. When irradiated
with NIR light, doxorubicin clogged with the Ru complex in the UCNP@mSiO2 was released due to
photocleavage of the Ru complex (see Figure 3b). Irradiation with 0.35 W cm−2 laser intensity was
sufficient to trigger the UCNPs-assisted photoreaction and release doxorubicin. Figure 3c also shows
how the drug release efficiency depends on the NIR laser output intensity. Approximately 78% of the
doxorubicin was released under irradiation with 0.64 W cm−2 for 5 h, while ~42% of the doxorubicin
was released under irradiation with 0.35 W cm−2 for 5 h. Direct cleavage of the photosensitive
compound for the drug release is dependent on the irradiated laser power and irradiation time.
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Figure 3. (a) Schematic illustration of photoreactions involving photosensitive compounds induced by
UV and visible light produced by upconverted NIR radiation. (b) Under NIR irradiation, upconverted
blue light triggers cleavage of the Ru complexes and drug release. (c) Doxorubicin release profiles with
laser power and irradiation time. Reproduced with permission from [70]. Copyright The Royal Society
of Chemistry, 2015.
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3.2. Change in the Charge on the Carrier Surface To Induce Electrostatic Repulsion

The delivery of chemical drugs enables effective therapy whether the carriers internalize into a
cell or not. Contrary to chemical drug delivery, the carriers containing gene expression molecules must
be internalized into a cell for gene therapy [72,73]. In addition, if the payload leakage is severe, the
efficacy of gene therapy is greatly reduced. Therefore, the size and surface charge of the nanocarriers
are important for cellular uptake. In particular, the positively charged surface of the nanocarriers
demonstrates the increased efficiency of gene loading as well as an increased binding capacity to the
anionic plasma membranes. The Fan group reported NIR-induced charge-variable cationic conjugated
polyelectrolyte brushes (CCPEB) that encapsulate UCNPs for promoted siRNA release and cooperative
photodynamic therapy (PDT) [61]. The charge-variable cationic conjugated polyelectrolyte (CCPE)
was synthesized based on the o-nitrobenzyl ester and changed the surface charge on the carrier via
the photocleavage reaction (see Figure 4a). CCPE has many positively charged quaternary amine
groups that act as negatively charged nucleic acid carriers. The release of o-nitrobenzyl aldehyde by
NIR irradiation converts the CCPEB on the UCNPs to zwitterionic conjugated polyelectrolyte brushes
(ZCPEB) and initiates siRNA release by charge repulsion (see Figure 4b). As a result, UCNP@CCPEB
as an siRNA carrier promoted siRNA release (80% efficiency) at pH 5.0 under 980 nm irradiation.
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3.3. Destruction of the Carrier

The nanocomposites encapsulating the drug molecules and functionalized nanomaterials increase
the payload for effective chemotherapy. This strategy has the advantage of creating multifunctional
materials by adding nanomaterials with various properties to the inside of the carrier. For example,
UV emission from the UCNPs can destroy the drug carrier itself. In 2011, Yan et al. reported NIR
light-triggered dissociation of block copolymer (BCP) micelles containing hydrophobic drugs and
UCNPs (see Figure 5a) [63]. When the UCNPs in the BCP micelle were irradiated with NIR light,
the polymethacrylate block in the BCP micelle was converted to hydrophilic poly-(methacrylic acid)
by photocleavage of the hydrophobic o-nitrobenzyl groups (see Figure 5b). This collapse of the
hydrophilic-hydrophobic balance destabilizes the BCP micelles [67]. Dissociation of the BCP micelles
was also confirmed using TEM analysis. Before NIR irradiation, the BCP micelles contained 4-5 UCNPs
per micelle (see Figure 5c). After excitation at 980 nm, the BCP micelles completely collapsed, and the
UCNPs and drugs were released from the micelles (see Figure 5d).
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Figure 5. (a) Schematic of drug release resulting from NIR light-triggered dissociation of UCNP-loaded
block copolymer (BCP) micelles. (b) Photoreaction scheme showing cleavage of the BCP backbone by
NIR irradiation. (c,d) TEM images of the UCNP-loaded BCP micelles (c) before and (d) after NIR light
irradiation. Reproduced with permission from [63]. Copyright American Chemical Society, 2011.



Nanomaterials 2018, 8, 511 8 of 15

4. Drug/Gene Delivery Using Photoisomerization

Photoisomerization is a reaction in which isomers change their spatial conformation under
optical irradiation [74–77]. Molecules such as azobenzene, spiropyran, and dithienylethene
are mainly used, and their spatial conformation changes reversibly under UV and visible
illumination [67,78]. This reaction can be used as a switch to control the drug/gene release by
opening the pathway through which the drug/gene passes. In particular, azobenzene with a trans-cis
transformation is mainly used for lanthanide-doped UCNPs [79–83]. In 2016, Yao et al. developed
azobenzene-liposome/UCNPs hybrid vesicles for controlled drug delivery to overcome cancer
MDR [79]. Azobenzene liposomes (Azo-Lipo) consists of 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC) phospholipids and azobenzene amphiphilic derivatives. The as-synthesized hydrophobic
UCNPs (NaGdF4:Yb,Tm@NaGdF4) were encapsulated by DSPC phospholipids via van der Waals
interaction to induce a hydrophilic surface [84]. The hydrophilic UCNPs and doxorubicin are
located in the hydrophilic cavity of the vesicles along with formation of the doxorubicin-loaded
Azo-Lipo/UCNPs hybrid vesicles. UV and visible light from the UCNPs enable reversible
photoisomerization of the azobenzene derivatives. Continuous rotation-inversion motion by
reversible trans-cis conversion destabilizes the lipid bilayer and releases the drug (see Figure 6a).
This nanocomposite showed increased drug release efficiency with higher laser power and increased
concentration of azobenzene derivatives. The release of doxorubicin reached 57 wt % in 6 h under
intermittent 2.2 W cm−2 NIR laser irradiation, while over 90 wt % release can be reached in 6 h under
intermittent 7.8 W cm−2 irradiation. The trans-cis transformation of azobenzene for drug release was
also adapted to the mesopore structure on the UCNPs. In 2013, Liu et al. reported NIR-triggered
anticancer drug delivery by UCNPs with an integrated azobenzene-modified mesoporous silica shell
(Dox-UCNP@mSiO2-azo) [80]. The back and forth wagging motion of the azobenzene groups through
trans-cis isomerization under UV and visible illumination acts as a molecular impeller to propel the
release of doxorubicin from silica mesopores (see Figure 6b). Because the azobenzene molecular
impeller is activated by light emitted from the UCNPs, drug release also depends on the laser power
and duration. More doxorubicin was released with higher NIR illumination intensity. Conventional
mesoporous silica releases the loaded drug by diffusion, the azobenzene impeller, regulated by
the NIR light, controls the drug release more precisely. The azobenzene trans-cis transformation
property has also been studied for use in gene delivery [85–88]. In 2017, Chen et al. reported
an NIR-induced UCNP-based siRNA nanocarrier that exhibited spatiotemporally controlled gene
silencing [81]. The UCNPs functionalized withβ-cyclodextrin (CD) form the (UCNP-(CD/Azo)-siRNA)
complex with siRNA-azobenzene through a host–guest interaction. Trans-azobenzene derivatives have
a strong host-guest interaction with CD [77,89]. Under NIR irradiation, UV emission from the UCNPs
induces photoisomerization of Azo-siRNAs into the cis configuration. The isomerized cis-azobenzene
derivatives exhibit polarity change and steric hindrance, which destabilizes the host–guest interaction
and releases siRNA (see Figure 6c). The amount of released siRNA can be easily controlled by selecting
an appropriate NIR irradiation time. About 41% and 85% of siRNA was released within 10 and 20 min
under 0.75 W cm−2 NIR irradiation, respectively. In addition, spatial gene silencing was controlled by
spatial irradiation in the cell culture dish. Cells which are half-covered by aluminum foil and irradiated
with the NIR laser (0.75 W cm−2, 10 min) show region-specific down-regulation of green fluorescent
proteins. This controlled drug/gene delivery shows that the NIR-activated UCNPs are safer and more
efficient carriers.
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UCNP-(CD/Azo)-siRNA [81]. Reproduced with permission from [79]. Copyright John Wiley and Sons,
2016. Reproduced with permission from [80]. Copyright John Wiley and Sons, 2013. Reproduced with
permission from [81]. Copyright Elsevier, 2018.

5. Conclusions and Future Prospects

The optical properties of lanthanide-doped UCNPs, which emit UV and visible light under
NIR excitation, are useful for biomedical applications such as bioimaging and drug/gene delivery.
In drug/gene delivery systems, UCNPs act as a source of UV light that cleaves the chemical link
between the drug/gene and the nanocarrier and induces the photoisomerization of photosensitive
compounds. The photocleavage of the photosensitive compound occurs by the direct cleavage of
conjugation, a change in the charge on the surface of the carrier, and the destruction of the carrier
itself. The photoreaction also depends on the NIR laser output power and irradiation time, resulting
in better control over drug/gene release. Photoisomerization induces conformational change of the
isomer. Azobenzene derivatives have been widely used as a photoisomer. These UCNPs generate a
rapid release of the drug/gene for cancer treatment. In addition, the UCNPs function as a UV source
and allow spatial control of gene expression by blocking the irradiating area. Despite the development
of drug/gene delivery systems using lanthanide-doped UCNPs, several problems remain. Drug/gene
payload is important for effective therapy and successful gene expression. However, a constraint of the
payload in nanocarriers limits the therapeutic efficacy of the drug/gene delivery system. Increasing
the concentration of nanocarriers induces high toxicity in normal tissues. Thus, to overcome these
limitations, further studies on drug/gene delivery systems that combine immunotherapy [90] or other
therapies, such as photodynamic therapy (PDT) [91,92] or photothermal therapy (PTT) [93], have been
reported. Researchers should also investigate and understand the leakage of drugs/genes from the
cargo to prevent side effects. For example, Bazylińska et al. reported that the leakage of delivery cargo



Nanomaterials 2018, 8, 511 10 of 15

was prevented by encapsulating the drug and UCNPs using the double emulsion method, which forms
hybrid nanocomposites [94,95]. Future research should be carried out to reduce the loss of therapeutic
agents as well as the leakage of inorganic species by utilizing lanthanide-doped UCNPs as nanocarriers.
In particular, dissociation of the carrier itself releases all components such as drug/gene molecules,
lanthanide-doped UCNPs, and enveloping molecules. This release can interrupt metabolism and
excretion behavior. Thus, future research should investigate the toxicity of the residue by long-term
tracking for the biosafety of nanocomposites.
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