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Abstract: This paper reports on the development and characterization of oxygen scavenging films
made of poly(3-hydroxybutyrate) (PHB) containing palladium nanoparticles (PdNPs) prepared
by electrospinning followed by annealing treatment at 160 °C. The PANPs were modified with
the intention to optimize their dispersion and distribution in PHB by means of two different
surfactants permitted for food contact applications, i.e., hexadecyltrimethylammonium bromide
(CTAB) and tetraethyl orthosilicate (TEOS). Analysis of the morphology and characterization of the
chemical, thermal, mechanical, and water and limonene vapor barrier properties and the oxygen
scavenging capacity of the various PHB materials were carried out. From the results, it was seen
that a better dispersion and distribution was obtained using CTAB as the dispersing aid. As a
result, the PHB/PdNP nanocomposites containing CTAB provided also the best oxygen scavenging
performance. These films offer a significant potential as new active coating or interlayer systems for
application in the design of novel active food packaging structures.

Keywords: polyhydroxyalkanoates; palladium nanoparticles; packaging; electrospinning

1. Introduction

An important increasing quantity of plastic waste is being generated yearly for which the precise
needed time for its biodegradation is certainly unknown. This environmental awareness has driven
the development and improvement of new biodegradable polymers, especially for single-use plastic
items [1]. In this sense, polyhydroxyalkanoates (PHAs) are well-known biopolymers that can be
produced microbially by a variety of microorganisms as an energy storage mechanism. They exhibit
similar performance in terms of mechanical, thermal, and barrier properties than petroleum-derived
polymers and, thus, they can potentially replace conventional thermoplastics (e.g., polyolefins) in a
wide range of applications [2]. In particular, barrier properties are of fundamental importance for food
packaging applications. For instance, there are many food products that are very sensitive to oxidation
and, to overcome this issue, packages with reduced oxygen permeability are desirable. Additionally,
the water resistance is also important, particularly for plastic materials intended for direct contact with
high moisture foodstuff as well as materials to be applied in high humidity conditions during storage
and/or transport [3].
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Poly(3-hydroxybutyrate) (PHB) is currently the most common representative of PHAs and this
biopolymer has been proposed for short-term food applications [4]. However, PHB is a brittle polymer,
as its enzymatic polymerization leads to the formation of macromolecules with highly ordered
stereochemical structures, resulting in a large degree of crystallinity [5]. One of the great advantages
of PHB over many other biodegradable polymers is its biodegradability under aerobic as well as
anaerobic conditions [6]. For this reason, PHB and their blends with other biopolymers, for instance
polylactide (PLA), have been extensively investigated for food packaging applications [7-9]. One of the
potential application fields of these materials is the development of films for packaging applications.
As an example, Zhang et al. [10] studied PHB/PLA blends in different ratios and concluded that by
blending PLA with 25 wt. % of PHB some interactions between both biopolymer matrices can be
achieved. Furthermore, their results also showed improved mechanical properties.

Palladium nanoparticles (PdNPs) are well known by their ability to dissociate hydrogen
molecules to single atoms. This fact is further enhanced due to its nano-sized form and resultant
high surface-to-volume ratio [11]. It has been demonstrated that the oxygen scavenging activity of
palladium-based oxygen scavenging films is strongly dependent on the coating substrate as well as on
the palladium deposition thickness. Optimization of these parameters can result in active scavenging
films where the residual headspace oxygen of packaged foods can be scavenged very quickly [10].
There is a drive to find ways to incorporate active packaging technologies directly into the package
walls. In spite of the advantages that they offer in maintaining quality and extending shelf life,
such systems are still little used. The reason stems from the additional cost involved, the potential
toxicity of the added scavenger in the food contact layer, and even more so because of the lack of
sufficient technical information on their performance and the lack of understanding of how to apply
them effectively [12].

Electrospinning is a fiber production method that employs high electric forces to draw charged
threads of polymer solutions or melts up to fiber diameters below 100 nm. It is a low startup cost
process in which a wide variety of both polymer and non-polymer materials have been used to form
mats composed of nanofibers with a high surface area-to-volume ratio [13]. The electrospinning process
has a wide variety of applications such as medical, filtration, tissue engineering, food engineering,
packaging, etc. [14-16]. Until now, this processing technology remained to a laboratory scale. However,
recent developments in instrumentation and process aid design have allowed this process to be scaled
to achieve the production volumes required in certain industrial commodity applications such as
fortified foods and active packaging [17].

In active packaging, nanotechnology has a significant potential because nanostructures display
a high surface-to-volume ratio and specific surface properties. Considering the high surface energy
of nanoparticles, which tend to agglomerate and to prevent this aggregation, either polar polymers
or surfactants can be used as protective agents and stabilizers of the nanoparticles. This is extremely
necessary to obtain mono-dispersed uniform particles and to be, thereafter, used in various application
purposes [18-20]. The objective of the present study was to prepare and characterize, for the first time,
PHB films by the electrospinning process incorporating PANPs. In order to improve the dispersion of
the PANPs in the PHB matrix, different surfactants were tested.

2. Materials and Methods

2.1. Materials

Bacterial aliphatic homopolyester PHB was supplied by Biomer (Krailling, Germany) as P226F.
According to the manufacturer, this is certified both as compostable and food contact grade,
presenting a density of 1.25 g/cm? and a melt flow rate (MFR) of 10 g/10 min at 180 °C and 5 kg.
The weight-average molecular weight (M) estimated by the manufacturer was 500 kDa and the
polydispersity index (PDI) was 2.
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2,2,2-trifluoroethanol (TFE) with 99% purity and p-limonene with 98% purity were both purchased
from Sigma-Aldrich S.A. (Madrid, Spain). The two tested surfactants, hexadecyltrimethylammonium
bromide (CTAB), with 99% purity, and tetraethyl orthosilicate (TEOS), with 98% purity, as well as
palladium (Pd) nano-powder, <25 nm particle size measured by transmission electronic microscopy
(TEM) and >99.5% trace metals basis, were also purchased from Sigma-Aldrich S.A. All products were
used as received without further purification.

2.2. Electrospinning

A PHB solution for electrospinning was prepared by dissolving the biopolymer at 10 wt. %.
The PANPs were added at 1 wt. % in relation to PHB to the solution. To improve the dispersion
of the PANPs, CTAB and TEOS were also added as dispersing aids at 0.5 wt. % with the PHB and
PdNPs mixture.

Electrospinning was performed using a Fluidnatek® LE50 benchtop line from Bioinicia S.L.
(Valencia, Spain) with a variable high-voltage 0-30 kV power supply. This device was equipped with a
motorized injector that was scanning towards a metallic collector, aiming to obtain a homogeneous
electrospun deposition. The different biopolymers solutions were transferred to a 30-mL plastic syringe
and the syringe was connected through polytetrafluoroethylene (PTFE) tubes to a stainless-steel needle
(D = 0.9 mm) whereas the needle tip was connected to the power supply. The solution was electrospun
for 2 h under a steady flow-rate of 6 mL/h using a motorized injector, scanning horizontally towards a
metallic grid. The distance between the injector and collector was optimal at 15 cm and the voltage
was set at 15 kV. The biopolymer solutions were electrospun in a controlled environmental chamber
at 23 °C and 40% relative humidity (RH), for a given processing time and in optimal conditions
to achieve steady fiber formation. The processing and solution characterization parameters for the
optimal electrospinning of this PHA grade were determined and optimized in a previous work [21].

Finally, the obtained electrospun mats were subjected to an annealing step below the biopolymer’s
melting point without applying pressure using a hydraulic press 4122-model from Carver, Inc. (Wabash,
IN, USA). The annealing was found optimal at 160 °C, without pressure, for 5 & 1 s, based on our
previous study [21]. The resultant films were air cooled at room temperature. Prior to thermal treatment,
the electrospun mats were equilibrated in a desiccator at 25 °C and 0% RH by using silica gel for at
least 1 week.

2.3. Characterization

2.3.1. Film Thickness

Film thickness was measured with a digital micrometer series 500014, having £0.001 mm accuracy,
from Mitutoyo Corporation (Kawasaki, Japan) at three random positions. The post-processed samples
had a thickness of typically 55 + 4 um.

2.3.2. Scanning Electron Microscopy

A 5-4800 microscope from Hitachi (Tokyo, Japan) was used to observe by scanning electron
microscopy (SEM) the morphology of the electrospun PHB fibers and the film cross-sections and
surfaces. Cross-sections of the samples were prepared by cryo-fracture of the electrospun PHB films
using liquid nitrogen. Then, they were fixed to beveled holders using conductive double-sided adhesive
tape, sputtered with a mixture of gold-palladium under vacuum, and observed using an accelerating
voltage of 5 kV. Image ] Launcher v 1.41 software was used to determine the average fiber diameter
and standard deviation by measuring the diameter of at least 100 fibers.

2.3.3. Transmission Electronic Microscopy

The morphology and distribution of the PANPs was studied using a JEOL 1010 from JEOL USA,
Inc. (Peabody, MA, USA) by TEM using an accelerating voltage of 80 kV.
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2.3.4. Differential Scanning Calorimetry

Thermal properties of the neat electrospun PHB fibers and films and of the multilayer systems
were evaluated by differential scanning calorimetry (DSC) using a Perkin-Elmer DSC 8000 (Waltham,
MA, USA) thermal analysis system under nitrogen atmosphere. The measurement was carried out on
~3 mg of each sample using a two-step program from 0 to 200 °C followed by a subsequent cooling
down to —50 °C, both at a heating rate of 10 °C/min. The DSC equipment was previously calibrated
with indium as a standard and the slope of the thermograms was corrected by subtracting similar
scans of an empty pan. Tests were done, at least, in triplicate.

2.3.5. Thermogravimetric Analysis

Thermogravimetric analysis (TGA) was performed in a TG-STDA Mettler-Toledo model
TGA/STDAS851e/LF/1600 analyzer from Mettler-Toledo, LLC (Columbus, OH, USA). The samples,
with an initial weight typically about 15 mg, were heated from 50 to 500 °C at a heating rate of
10 °C/min under nitrogen/air flow.

2.3.6. Infrared Spectroscopy

Fourier transform infrared spectroscopy (FTIR) spectra were collected coupling the attenuated
total reflection (ATR) accessory Golden Gate of Specac, Ltd. (Orpington, UK) to Bruker Tensor 37 FTIR
equipment (Rheinstetten, Germany). Single spectra were collected in the wavelength range from 4000

to 600 cm~! by averaging 20 scans at a resolution of 4 cm ™.

2.3.7. Mechanical Tests

Dumbbell-shaped specimens were die-cut from the electrospun films and conditioned to ambient
conditions, i.e., 25 °C and 50% RH, for 24 h prior to tensile testing. Tests were carried out at room
temperature in a universal mechanical testing machine AGS-X 500N from Shimadzu Corp. (Kyoto,
Japan) in accordance with ASTM D638 (Type IV) standard. This was equipped with a 1-kN load cell
and the cross-head speed was set at 10 mm/min. A minimum of six specimens was measured for each
sample and the average results with standard deviation were reported.

2.3.8. Water Vapor Permeability

The water vapor permeability (WVP) of the samples was determined, in triplicate, using the
gravimetric method ASTM E96-95. To this end, 5 mL of distilled water was placed inside a Payne
permeability cup (& = 3.5 cm) from Elcometer Sprl (Hermalle-sous-Argenteau, Belgium) to expose the
film to 100% RH on one side. The liquid was not in contact with the film. Once the films were secured
with silicon rings, they were placed within a desiccator at 0% RH cabinet at 25 °C. The dryness of
the cabinet was held constant using dried silica gel. Cups with aluminum films were used as control
samples to estimate solvent loss through the sealing. The cups were weighted periodically using
an analytical balance with a £0.0001 g accuracy. Water vapor permeation was calculated from the
steady-state permeation slopes obtained from the regression analysis of weight loss data vs. time,
and the weight loss was calculated as the total loss minus the loss through the sealing.

2.3.9. D-Limonene Permeability

Permeability to limonene vapor was measured as described above for WVP. For this, 5 mL of
D-limonene was placed inside the Payne permeability cups. The cups containing the films were placed
at controlled environmental conditions, i.e., 23 °C and 40% RH. Limonene vapor permeation rates
were estimated from the steady-state permeation slopes and the weight loss was calculated as the total
cell loss minus the loss through the sealing. The samples were measured in triplicate and the limonene
permeability (LP) values were calculated taking into account the average film thickness in each case.
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2.3.10. Oxygen Scavenging Activity

Round-bottom Schlenk flasks from VidraFoc S.A. (Barcelona, Spain) with a PTFE stopcock and a
headspace volume of 50 cm® were used for the oxygen scavenging measurements. The flasks contained
a valve for gas flushing in and a O;-sensitive sensor spot (PSt3, detection limit 15 ppb, 0-100% oxygen)
from PreSens (Regensburg, Germany) was glued onto the inner side of the flasks for measuring oxygen
depletion. The electrospun fibers and films were cut (5 x 5 cm?) and placed into the flasks. The flask
was subsequently flushed for 30 s at 1 bar with a gas mixture containing 1 vol. % oxygen, 4 vol. %
hydrogen, and 95 vol. % nitrogen, which was provided by Abell6 Linde, S.A. (Barcelona, Spain).
The oxygen concentration in the cell was monitored by a non-destructive measurement method using
the OXY-4 mini (PreSens) multi-channel fiber optic oxygen meter for simultaneous read-out of up to
4 oxygen sensors, used with sensors based on a 2 mm optical fiber. Oxygen concentrations over time
were measured by linking the light-emitting (600-660 nm) optical fibers to the flasks inner sensing
spots. The sensor emits a certain amount of luminescence depending on the oxygen concentration in
the cell that was calibrated to yield concentration by the equipment. All measurements were carried
out at 23 °C and at 50% and 100% RH.

2.4. Statistical Analysis

The test data were evaluated through analysis of variance (ANOVA) using STATGRAPHICS
Centurion XVI v 16.1.03 from StatPoint Technologies, Inc. (Warrenton, VA, USA). Fisher’s least
significant difference (LSD) was used at the 95% confidence level (p < 0.05). Mean values and standard
deviations were also calculated.

3. Results and Discussion
3.1. Morphology and Optical Properties

3.1.1. Optical Appearance

Figure 1 shows the contact transparency pictures of the electrospun PHB fibers, Figure la—c,
as well as of their respective annealed films, Figure 1d—f. From these pictures, it can be observed
that all the electrospun fiber mats were completely opaque due to the ultrathin size of the fibers that
generate a significant level of porosity and hence refract the light very strongly [21]. On the other
hand, the annealed films presented an improved contact transparency, specially the sample with CTAB.
Due to the presence of the PANPs, the films developed an expected dark color.

Figure 1. Contact transparency pictures of the electrospun poly(3-hydroxybutyrate) (PHB) fibers

containing palladium nanoparticles (PdNPs) and their respective annealed films: (a) PHB/PdNP fibers;
(b) PHB/PdNP /hexadecyltrimethylammonium bromide (CTAB) fibers; (c) PHB/PdNP/tetraethyl
orthosilicate (TEOS) fibers; (d) PHB/PdNP film, (e) PHB/PdNP/CTAB film, (f) PHB/PdNP/TEOS film.
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3.1.2. Morphology of Electrospun PHB Materials

The morphology of the electrospun fibers and their annealed films were studied by SEM.
Representative images of all the electrospun samples are gathered in Figure 2. The images were
taken from the surface and cross-sections of the obtained fibers and films. As shown in Figure 2a,
the diameter of the neat electrospun PHB fibers was distributed primarily in the range of 200-600
nm, presenting a smooth and bead-free morphology. In particular, the mean diameter was found to
be at 350 & 147 nm. One can observe that the presence of the PANPs led to a fraction with increased
fiber diameter and also resulted in a spindle-type beads formation. This effect can be observed in
Figure 2d,g, corresponding to the electrospun PHB/PdNP and CTAB-containing PHB/PdNP fibers,
respectively. This observation may suggest that, in some fibrilar regions, partial agglomeration of the
PdNPs may occur. Indeed, some degree of agglomeration is a common phenomenon in composites
due to the large surface area and high total surface energy associated with nanoparticles incorporated
into polymer matrices that makes them amenable to clustering [22]. The nanofibers diameter was
previously reported to decrease when the surfactant concentration increased in the electrospinning
solution [23]. Interestingly, the TEOS-containing PHB/PdNP fibers, shown in Figure 2j, presented a
significant fraction of the fibers with reduced fiber diameter. This effect has been previously described
for other electrospun materials and it has been particularly attributed to both the expected decrease in
surface tension and an increase in conductivity, which in turn produce an increase in the stretching
forces in the jet and consequently decreases the fiber diameter [24-26].

From the SEM images of the fibers cross-sections, one can observe that Figure 2b,e, corresponding
to the neat PHB and PHB/PdNP fibers, respectively, showed similar morphologies. In particular,
both electrospun mats presented cross-sections with relatively high porosity and low compaction.
Alternatively, the cross-section of the surfactant-containing PHB/PdNP fibers, included in Figure 2h,k,
were seen to be more compacted since the adhesion among the fibers in the layered structure was
higher. For all layers, it was also possible to perceive some particles aggregation that may not be
necessarily related to the presence of the PANPs but, more probably, to additives such as the nucleating
agent boron nitride, originally included in the biopolymer by the manufacturer.

In the SEM images of the films cross-sections, shown in Figure 2¢ fi ], it can be observed that the
electrospun fibers fused and interconnected among each other after the annealing treatment at 160 °C,
successfully leading to the packing of the fiber mat into a continuous film. Among the here-prepared
films, the neat PHB film showed a more uniform, smooth, and homogeneous surface. After the addition
of the PANPs and surfactants, the films became more heterogeneous, rougher, and also presented some
cavities. This morphology change can be then related to the presence of the PANPs, which more likely
interfered in the fibers coalescence process.

3.1.3. Dispersion of PANPs

In order to provide a more resolved information about the dispersion of the PANPs into the PHB
biopolymer matrix, TEM was performed on the nanocomposite fibers and films. The distribution of
the PANPs inside the electrospun fibers are illustrated in the TEM images included in Figure 3a,d,g.
From the TEM image included in Figure 3a, one can clearly discern that the PANPs were mainly
agglomerated in certain regions of the submicron PHB fibers. One can also observe that the addition
of both surfactants, i.e., CTAB and TEOS, as respectively shown in Figure 3d,g, successfully improved
the PANPs dispersion in the PHB fibers. Dispersion and distribution was, however, seen higher in the
CTAB-containing sample.
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Figure 2. Scanning electron microscopy (SEM) images taken on the surface views and cross-sections of
the electrospun poly(3-hydroxybutyrate) (PHB) fibers containing palladium nanoparticles (PdNPs)
and their respective annealed films: (a) Surface view of the neat PHB fibers; (b) Cross-section of the
neat PHB fibers; (c) Cross-section of the neat PHB film; (d) Surface view of the PHB/PdNP fibers;
(e) Cross-section of the PHB/PdNP fibers; (f) Cross-section of the PHB/PdNP film; (g) Surface view
of the PHB/PdNP /hexadecyltrimethylammonium bromide (CTAB) fibers; (h) Cross-section of the
PHB/PANP/CTAB fibers; (i) Cross-section of the PHB/PdNP/CTAB film; (j) Surface view of the
PHB/PdANP/tetraethyl orthosilicate (TEOS) fibers; (k) Cross-section of the PHB/PdNP /TEOS fibers;
(1) Cross-section of the PHB/PdNP/TEOS film.

In relation to the annealed films, the PHB/PdNP film without surfactant, shown in Figure 3b,c,
still presented a clear aggregation of the particles. As opposite, Figure 3ef, for the CTAB-containing
film sample, and Figure 3h,i, for the TEOS-containing film sample, clearly showed that the PANPs
were evenly and relatively well distributed in the PHB films without forming agglomerates. In the case
of the TEOS-containing film sample, the nanoparticle dispersion was less uniform when compared
to the sample prepared with CTAB surfactant due to the absence of large grey dark areas. In both
PHB films, very small nanoparticles of approximately 5 & 2 nm can be seen, being homogeneously
dispersed along the biopolymer matrix. The present results are in agreement with the results showed
by Shaukat et al. [27], where PANPs were incorporated into polyamide 6 (PA6)/clay nanocomposites
and the nanoparticles were largely separated from each other and oriented in all possible directions in
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the polymer matrix. However, due to the absence of surfactant, some particles still agglomerated into
clusters of bigger sizes that increased at the PA6 interfaces with the nanoclays.

Figure 3. Transmission electron microscopy (TEM) images of the electrospun poly(3-hydroxybutyrate)
(PHB) fibers containing palladium nanoparticles (PdNPs) and their respective annealed films:
(a) PHB/PANP fibers; (b,c) PHB/PdNP film; (d) PHB/PdNP/ hexadecyltrimethylammonium bromide
(CTAB) fibers; (e,f) PHB/PdANP/CTAB film; (g) PHB/PdNP/tetraethyl orthosilicate (TEOS) fibers;
(h,i) PHB/PdNP/TEOS film.

3.2. Thermal Properties

3.2.1. Melting Profile

The thermal properties of the electrospun PHB fibers and films containing the PANPs nanoparticles
were firstly investigated by DSC analysis. Table 1 gathers the melting temperatures (T, and Tp2)
and enthalpies (AHy,) obtained from the first heating run. Likewise, the crystallization temperature
(Tc) was also obtained from the cooling run. One can observe that when thermal annealing was
applied to the fibers, the melting profile of the PHB materials, both temperature and enthalpy, slightly
decreased. In particular, the Ty, values of the neat PHB-based fibers varied in the 168-170 °C range,
melting in a single peak, whereas these values were around 3 °C lower in their counterpart film
samples. In addition, the incorporation of the PANPs into PHB induced a slight decrease in both the
melting temperature and enthalpy as well as resulted in the formation of multiple melting peaks.
This observation may suggest that the nanoparticles interfered with the crystallization process of the
homopolyester, producing more imperfect crystals composed of thinner lamellae that melted over
a wider range at lower temperatures and with lower enthalpies [28]. This effect was more intense
in the case of the surfactant-containing film samples, which suggests that the PANPs were better
dispersed then highly influencing the packing process of the PHB chains during cooling. In relation to
the crystallization from the melt, the PHB film samples incorporating the PANPs also showed slightly
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lower values of T, than the fibers, which confirms that the nanoparticles provided an anti-nucleating
effect on PHB during the film formation. In any case, given that PHB is known to exhibit cold
crystallization during the dynamic DSC runs, it becomes difficult to discuss with certainty potential
changes in crystallinity and crystalline morphology [21,26].

Table 1. Thermal properties obtained from the differential scanning calorimetry (DSC) curves in terms
of melting temperature (Tr), normalized melting enthalpy (AHm), crystallization temperature (Tc),
and normalized crystallization enthalpy (AH.) for the various poly(3-hydroxybutyrate) (PHB) and
palladium nanoparticles (PdNPs) fibers and films with and without hexadecyltrimethylammonium
bromide (CTAB) and tetraethyl orthosilicate (TEOS).

Sample Tm1 (°C) Tm2 (°O) AHn (J/g) T. (J/g) AH. (J/g)
PHB Fibers - 169.1+£092 641+112 11024092 5934200
PHB Film - 1684+132 71.8+13¢ 1105+122 61.1+£043P
PHB/PdANP Fibers 1564 +£213P 1683 +1.120 594409 10844+05%P 631+£152
PHB/PdNP Film 1550122 1684 +122P 585+089  1095+212 563+1.0%

PHB/PANP/CTAB Fibers ~ 156.7 £ 0.52P 16774+ 092 622414 10914092 60.3+0.82P
PHB/PdNP/CTAB Film 1586 +14° 1651+14° 603+15° 1068+03P 551+074
PHB/PANP/TEOS Fibers ~ 15524072  1699+052 59.7+094  1108+1.0% 60.1+1.12P
PHB/PdNP/TEOS Film 1594 +19°¢ 1655+ 12P 629+082 1100+232 514+18¢

a¢: Different superscripts within the same column indicate significant differences among the samples (p < 0.05).

3.2.2. Thermal Stability

Figure 4 shows the evolution of the mass loss as a function of temperature for the PHB samples,
including the curves of the first derivative analysis (blue lines). As shown in Table 2, it can be seen that
the neat PHB initiated degradation at 207 °C while the biopolymer fully decomposed in two steps,
seen at 262 °C and 348 °C, providing a residual mass of approximately 3%. Thermal degradation of the
PHB films containing the PANPs and the surfactants also occurred in two stages with a slight increase in
thermal stability. In particular, the onset degradation took place in the 220-230 °C range that continued
to the first degradation stage at 270-275 °C and, at a slower rate, to over 360-380 °C, remaining a
residue of 3-4% of the initial mass of the sample. In this sense, Diez-Pascual et al. [29] demonstrated
that the incorporation of zinc oxide (ZnO) improved the heat resistance of PHB, which was ascribed to
the barrier effect of the nanoparticles that effectively hindered the diffusion of decomposition products
during thermal degradation. Therefore, the PANPs probably also functioned as a thermal barrier,
absorbing heat, thus also resulting in an enhanced thermal stability.

It is also worthy to note the slight increase observed in the thermal stability of the PHB/PdNP
films with the incorporation of both surfactants, especially in the case of CTAB. This suggests that
the surfactant increased the matrix-nanoparticle interaction, inducing a positive delay in thermal
degradation. Taking into account that the ammonium salts degrade at the temperature range of
150-460 °C, the surfactants could successfully provide a bonding effect between both components of
the nanocomposite and, eventually, enhance the whole thermal stability of PHAs.
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Figure 4. Thermogravimetric analysis (TGA) curves of the electrospun poly(3-hydroxybutyrate) (PHB)
and palladium nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium bromide
(CTAB) and tetraethyl orthosilicate (TEOS) surfactants.

Table 2. Mean values of thermal stability obtained from the thermogravimetric analysis (TGA) curves
of the electrospun poly(3-hydroxybutyrate) (PHB) and palladium nanoparticles (PdNPs) films with and
without hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate (TEOS) in terms
of degradation temperature at 5% of mass loss (T5¢,), degradation temperature (Taeg), and residual

mass at 500 °C (Rsgg).

Film Sample TS% (OC) Tdegl (OC) TdegZ (OC) R500 (0/0)
PHB 207.0 + 4.4 262.0 £ 3.8 348.0 + 6.4 3.08 + 0.04
PHB/PdNP 2241+ 3.6 2713 £2.6 368.2 + 3.8 3.17 £0.03
PHB/PANP/CTAB 220.0 £ 8.1 2781+ 3.4 3922 +54 3.81 £ 0.04
PHB/PANP/TEOS 2302 +25 2752+ 4.1 386.1 +2.3 444 1+ 0.04

3.3. FTIR Analysis

FTIR is a powerful tool, which is very sensitive to the molecular environment, to investigate the
structural changes that occur in the material during any chemical or physical process. In Figure 5,
the FTIR spectra are presented for the above-mentioned PHB-based fibers and films. From the given
spectra of the PHB materials, the band centered at 1722 cm ™! is an indicative of the C=O stretching
vibration for the biopolyester molecule. The absorption bands in the 1200-1300 cm ! range were
previously related to the presence of the C—O-C stretching vibrations whereas the band centered at
approximately 980 cm ! has been ascribed to stretching bands of the carbon—carbon single bond (C-C)
in PHAs [21,30]. In the spectra of the pure surfactants, it is interesting to be noted that the bands
at 2873 cm~! and 2977 cm ™! correspond to the anti-symmetric C-H stretching of CTAB [19] while
the bands located at 1168 cm ™!, 1103 cm !, and 1080 cm ! have been assigned to the CH3 rocking
and C-O asymmetric stretching of TEOS, respectively [31]. For the surfactant-containing PHB films,
the above surfactant bands or others could not be detected most likely due to the low concentration in
which these additives are present in the composite.
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Figure 5. Fourier transform infrared (FTIR) spectra of: (a) Hexadecyltrimethylammonium bromide
(CTAB); (b) Tetraethyl orthosilicate (TEOS); (c) Poly(3-hydroxybutyrate) (PHB) fibers; (d) PHB film;
(e) PHB/palladium nanoparticles (PdNP) fibers; (f) PHB/PdNP film; (g) PHB/PdNP/CTAB fibers;
(h) PHB/PdNP/CTAB film; (i) PHB/PdNP/TEOS fibers; (j) PHB/PdNP/TEOS film. Arrows indicate
the chemical bonds and/or groups discussed in the text.

Table 3 gathers the band area ratio A1230:A1453 and the 1722 cm ™! carbonyl band width at
half maximum, which have been recently associated with crystallinity content in electrospun PHB
materials [21]. Both a 1722 cm~! band broadening and reduction in the A1230:A1453 band area
ratio have been previously connected with a reduction in molecular order and, hence, in crystallinity.
Figure 5 and also Table 3 indicate that the band at 1722 cm ! tended to broaden somehow in the case
of the film samples as compared to their respective fibers, which can be indicative of a phenomenon of
molecular disorder due to thermal treatment in the material. The band ratio seems to be less sensitive,
as previously discussed [21], than the carbonyl band. These results may be in close agreement with
those previously reported by Pachekoski et al. [32], in which it was indicated that band widening with
annealing correlates with the changes in molecular backbone stability and, hence, crystallinity in PHB.
Similarly, Mottin et al. [33] also reported a change in crystallinity in PHB by annealing process.
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Table 3. Full width at half maximum (FWHM) of the carbonyl band centered at ~1722 cm ! and
the band area ratio A1230:A1453 for the electrospun poly(3-hydroxybutyrate) (PHB) and palladium
nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium bromide (CTAB) and
tetraethyl orthosilicate (TEOS).

Sample FWHM172, (cm_l) A1230:A1453
PHB Fibers 16.20 4.28
PHB Film 16.35 4.03
PHB/PdNP Fibers 15.10 4.24
PHB/PANP Film 15.60 4.86
PHB/PdNP/CTAB Fibers 14.44 3.58
PHB/PANP/CTAB Film 14.23 4.28
PHB/PdNP/TEOS Fibers 15.89 4.25
PHB/PdNP/TEOS Film 16.00 4.28

3.4. Mechanical Properties

Table 4 presents the mechanical properties, obtained from the tensile tests, of the electrospun
PHB films. The incorporation of the PANPs into PHB caused an increase in both the modulus of
elasticity and tensile strength, therefore increasing the elastic deformation and stiffness of the PHB
film. The enhancement in mechanical resistance attained in the nanocomposite films can be attributed
to the combination of fairly good nanoparticle dispersion and strong interfacial adhesion between
both phases through interactions via H-bonding of PHB [29]. In relation to elongation at break,
all films presented values of around 3%, which confirms the intrinsic brittleness of PHB. In any case,
the presence of the PANPs did not alter the film ductility and toughness characteristics of PHB while the
effect of the surfactants addition on their mechanical performance was also not statistically significant.

Table 4. Mechanical properties in terms of elastic modulus (E), tensile strength at break (oy,), elongation
at break (%gey,), and toughness (T) of the electrospun poly(3-hydroxybutyrate) (PHB) and palladium
nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium bromide (CTAB) and
tetraethyl orthosilicate (TEOS).

Sample E (MPa) oy, (MPa) £p (%) T (mJ/m?)

PHB film * 1104 + 742 178 £1.842 29+1.02 03+012
PHB/PdNP 1255 £ 15b 225+ 42P 31+102 044012
PHB/PdANP/CTAB 1262 + 14 b 233 +14°¢ 30+£012 04+012
PHB/PdANP/TEOS 1288 4+ 230 © 21.7 +4.1° 27+1.0%2 03+022

a=¢: Different superscripts within the same column indicate significant differences among the samples (p < 0.05). *
Obtained in previous work [21].

3.5. Barrier Properties

3.5.1. Water Vapor Permeability

Measuring the loss or gain in water content is a common method to estimate the WVP of film
samples. The WVP values of the electrospun PHB films are gathered in Figure 6. It can be observed
that the neat PHB film showed a higher barrier performance to water vapor than their respective
nanocomposites with the PANPs. In particular, while the neat PHB film showed a WVP value of
5.2 x 1071% kg:-m-m~2.Pa~!.s7!, this value was 1.2 x 107! kg:-m-m~2.Pa~!.s~! for the PHB/PdNP
film. The observed permeability increase in the nanocomposite films can be related to the existence of
not bonded interfacial regions acting as preferential paths, especially in the vicinity of agglomerates.
These preferential pathways could accelerate the diffusion of gas molecules, thus increasing the
diffusion coefficient [34]. Interestingly, the WVP values of the PHB/PdNP films was lower in the case
of the CTAB-containing film, i.e., 8.0 x 107> kg:m-m~2-Pa~!-s~!, and considerably higher for the
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film with TEOS, i.e., 6.6 x 107 kg-m-m~2-Pa~!-s~1. This result suggests that the dispersion in the
PHB/PdNP/CTAB film was higher and, then, the sizes of such unbonded interfacial regions were
lower. In addition, the high WPV value observed for the PHB/PdNP/TEOS film suggests that this film
sample could be also plasticized by the surfactant, increasing the free volume of the film and favoring
the diffusion of water vapor molecules through the film sample [35,36].

8x10™ a
6x10"*

ax10™

2x10™

8x10™"°
6x107° d

4x10"°

2x107"°

Water Vapor permeability (Kg-m:m* s'-Pa’)

1%10"° T T
PHB PHB/PdNP PHB/PdNP/CTAB PHB/PANP/TEOQS

Figure 6. Values of water vapor permeability (WVP) of the electrospun poly(3-hydroxybutyrate) (PHB)
and palladium nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium bromide
(CTAB) and tetraethyl orthosilicate (TEOS) surfactants. Different letters indicate significant differences
among the samples (p < 0.05).

3.5.2. D-Limonene Permeability

To test the barrier performance for volatile compounds such as aromas, p-limonene is commonly
used. Figure 7 shows the values of LP, where one can observe that the neat PHB film presented
the lowest permeability for D-limonene with a value of 3.2 x 1071 kg:'m:m~2.Pa~!-s7!. In the
case of the nanocomposite films, the LP values increased from 4.7 x 107! kg:m-m~2.Pa~!.s7!,
for the PHB/PdANP film, to 9.6 x 107!° and 9.0 x 10~ kg:m-m~2-Pa~!.s~!, for the CTAB- and
TEOS-containing PHB/PdANP films, respectively. As discussed above, the presence of the PANPs and
their agglomerates may result in the creation of preferential paths for sorption and diffusion of the
aroma molecules hence resulting in a reduced barrier performance. The here-obtained results are
showing opposite behavior as the ones reported earlier by Busolo and co-workers [37] who dispersed
silver nanoparticles (nAg) in PLA, yielding nanocomposites with enhanced barrier properties. Similarly,
Rhim et al. [38] reported agar/nAg composites where they confirmed a substantial improvement
in barrier properties of the composite. In the case of the surfactants-containing PHB/PdNP films,
it should be also taken into account that permeability of p-limonene in PHB is mainly controlled
by a solubilization mechanism due to the capacity of PHAs to uptake large amounts of this organic
compound [39]. This supports the fact that plasticized PHB materials present increased values of
aroma permeability.
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Figure 7. Values of D-limonene permeability (LP) of the electrospun poly(3-hydroxybutyrate) (PHB)
and palladium nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium bromide
(CTAB) and tetraethyl orthosilicate (TEOS) surfactants. Different letters indicate significant differences
among the samples (p < 0.05).

3.5.3. Oxygen Scavenging Activity

The oxygen scavenging activity of the here-prepared electrospun fibers and films containing the
PdANPs was determined by measuring the oxygen scavenging rate (OSR). In relation to the electrospun
fibers, Figure 8 shows the decay or depletion of the oxygen concentration as a function of time, for a
span time of 800 min, at both 50% and 100% RH. From observation of the graph it can be seen that,
while the neat PHB fibers were unable to reduce the amount of oxygen in the cell, comparatively,
the free PANPs in powder form were able to reduce all available headspace oxygen in an extremely
short time. The incorporation of the PANPs into the PHB fibers by electrospinning generated mat
samples with intermediate oxygen scavenging activity. However, as it can also be observed in the
graph, the performance of the developed nanocomposite fibers was strongly dependent on the RH
conditions. All electrospun mats presented a significantly lower oxygen scavenging activity at 50%
than at 100% RH. For instance, at the end of the experiment carried out at 50% RH, oxygen depletion
varied from almost 40%, for the PHB/PdNP/CTAB fibers, to only ca. 10%, for the PHB/PdNP/TEOS
fibers. However, at 100% RH, the electrospun PHB/PANP mat reached a reduction in the oxygen
volume of approximately 85% while both surfactant-containing PHB/PdNP fibers were able to fully
consume the whole amount of oxygen after 800 min. It is also worthy to mention that the depletion rate
was faster in the case of the PHB/PdNP/CTAB mat, which further confirmed the higher dispersion
achieved for the nanoparticles with this surfactant. In relation to the effect of humidity, it is known that
moisture favors the catalytic activity of the PANPs, which can be mainly related to the fact that water
can be associatively adsorbed directly on the PANP surface and thereby interact with the adsorbed
hydrogen and oxygen [10]. A possible mechanism is that the adsorbed atomic oxygen and hydrogen
forms an OH intermediate that reacts with an adsorbed hydrogen atom or another OH molecule.
Another possible explanation is the reaction of adsorbed oxygen with gas-phase hydrogen or with
some kind of dihydrogen species weakly adsorbed on the surface. Finally, a concerted reaction of two
adsorbed hydrogen atoms and an adsorbed oxygen atom has been also considered [40].
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Figure 8. Oxygen depletion of the electrospun poly(3-hydroxybutyrate) (PHB) and palladium nanoparticles
(PdNPs) fibers with and without hexadecyltrimethylammonium bromide (CTAB) and tetraethyl orthosilicate
(TEOS) surfactants. Values were measured at 50% and 100% relative humidity (RH).

In Figure 9, the oxygen volume depletion obtained with the electrospun films at 100% RH are
shown. Comparison between Figures 8 and 9 revealed that the oxygen scavenging effect of the films
was considerably lower than that of the same material in the fiber form. This reduction in the OSR is
related to the higher surface-to-volume ratio of the electrospun fibers than the films, since the fibers
mats present an extremely high porosity. In any case, all PHB/PdNP films still presented significant
oxygen scavenging capacity and, among the samples tested, the CTAB-containing films showed the
highest performance as expected in view of all the above observations. This result can be explained
by the better dispersion of the PANPs achieved in the PHB matrix using CTAB. In agreement with
the data reported here, Ahalawat and co-workers [41] evaluated the simultaneous effects of cationic
surfactants on the textural and structural properties of silica nanoparticles. It was observed that the
silica nanoparticles displayed better dispersion and lower size than those prepared with other two
cationic surfactants using an aqueous TEOS precursor solution with CTAB. In relation to this, it has
also been reported that an SiOx matrix between a coating of palladium and the substrate presents
higher values of OSR than the palladium coated directly onto PET films [42]. These findings were later
confirmed on PLA [10].
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Figure 9. Oxygen depletion of the electrospun poly(3-hydroxybutyrate) (PHB) and palladium
nanoparticles (PdNPs) films with and without hexadecyltrimethylammonium bromide (CTAB) and
tetraethyl orthosilicate (TEOS) surfactants. Values were measured at 100% relative humidity (RH).

4. Conclusions

In this study, PANPs were mixed with CTAB and TEOS surfactants to have better dispersion in
electrospun PHB fibers. The resultant fibers were annealed at 160 °C to form continuous PHB films of
direct application interest. Morphological analysis carried out by SEM and TEM showed that a better
dispersion was achieved for the electrospun PHB/PdNP/CTAB film. DSC indicated that the presence
of the PANPs reduced both the melting point and the degree of crystallinity of PHB, thus acting as an
anti-nucleating agent, which was further confirmed by FTIR analysis. WVP and LP measurements
indicated that the nanocomposite films, including those modified with surfactants, presented lower
barrier performance than the neat PHB film. These results were ascribed to the reduced crystallinity
degree and to existence of unbonded interfacial regions and/or voids between the biopolymer matrix
and the inorganic nanoparticles that may serve as preferential ways for the diffusion of gas molecules.
Finally, the oxygen scavenging activity of the PHB materials was evaluated at different RHs. Although
the electrospun films presented lower capacity to absorb oxygen that their counterpart fibers, these still
presented significant activity at 100% RH. The here-developed and -characterized electrospun PHB
films are suitable potential candidates as coatings or interlayer systems for active food packaging
applications and the followed methodology represents a new route to prepare these films due to the
relative high dispersion achieved of the PANDPs.
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