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Abstract: Carbon nanotubes are frequently selected for supercapacitors because of their major
intrinsic properties of mechanical and chemical stability, in addition to their excellent electrical
conductivity. However, electrodes using carbon nanotubes suffer from severe performance
degradation by the phenomenon of re-stacking during fabrication, which hinders ion accessibility.
In this study, short single-wall carbon nanotubes were further shortened by sonication-induced
cutting to increase the proportion of edge sites. This longitudinally short structure preferentially
exposes the active edge sites, leading to high capacitance during operation. Supercapacitors
assembled using the shorter-cut nanotubes exhibit a 7-fold higher capacitance than those with pristine
single-wall nanotubes while preserving other intrinsic properties of carbon nanotubes, including
excellent cycle performance and rate capability. The unique structure suggests a design approach for
achieving a high specific capacitance with those low-dimensional carbon materials that suffer from
re-stacking during device fabrication.
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1. Introduction

As the demands for renewable energy sources have grown in environmentally friendly industries,
high-performance energy storage systems are required for applications ranging from mobile electronic
instruments to electric vehicles and buildings. Various types of electrochemical energy storage devices
have been developed to effectively match to the energy sources. As alternatives to traditional dielectric
capacitors and batteries, supercapacitors (SCs) (also known as electrical double layer capacitors
(EDLCs)) have gained great interest because of their high power density, long life, and high charge
and discharge rates [1,2]. SCs store and release electrical energy based on the electrical double
layers formed by electrostatic interactions between ions in the electrolyte and the electrodes [3].
This charge storage mechanism creates electrochemical energy without chemical/mechanical stress on
the electrode materials, and introduces advantages such as high rate capabilities and long-term
cycle stabilities [4]. The electrochemical performance of SCs is primarily affected by the active
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surface area of the electrode materials, since the specific capacitance is proportional to the number
of ions interacting with the electrochemical surface area [5]. Thus, nanostructuring the electrode
material to increase the number of active sites has been widely adopted to create high-performance
electrodes for SCs. Recently, metal oxide- [6–8] and conductive polymer-based [9,10] materials for
pseudocapacitors (which have a different mechanism from EDLCs, using a surface redox reaction)
have been developed to resolve the insufficient capacitance issues [1] of carbon-based SCs. However,
long-term stability issues are still a concern in pseudocapacitors since the redox reactions on the
surface during ion storage induce a constraining stress in the electrodes by volume expansion [8,10].
To address these concerns and meet industrial requirements for complementary devices, carbon-based
EDLC-type SCs have been a major target for energy storage systems. Low-dimensional (for example,
1- or 2-D) carbon nanomaterials such as carbon nanotubes [11–13], graphene [14–16], and porous
activated carbon [17–20] have been studied for use in SC electrodes. The specific capacitance of a fully
configured SC can be increased by large surface areas and high conductivities. Carbon nanotubes
(CNTs) have attracted special interest as electrode materials for EDLCs because of their exceptional
thermal [21], electrical [22], and mechanical [23] properties; moreover, the electrochemically active area
is maximized by their unique 1-D structure [11,24,25]. Although CNTs theoretically increase the specific
capacitance of EDLCs because of their unique structure, actual capacitances of CNT-based EDLCs
only show moderately better or even poorer specific capacitances than SCs based on commercial
activated carbon. Since re-stacking occurs during electrode fabrication from interaction between
the CNTs, resulting in a reduction in exposed active surface, the performance of CNT electrodes in
SCs can be severely degraded [26]. In this work, an ultrasonic-assisted cutting process (previously
reported [27]) is used to prepare cut single-wall CNTs (c-SWNTs) for SC electrodes. The cross-section
of the cut edge in c-SWNTs can provide additional active sites for attaching electrolyte ions during SC
operation. Moreover, the active sites of c-SWNTs are easily exposed even after re-stacking because of
the short length of c-SWNTs. By this simple structural modification, the electrochemical performance of
c-SWNT electrodes shows a remarkable improvement in comparison to conventional SWNT electrodes.
The as-prepared c-SWNT electrode exhibits a 7-fold higher specific capacitance than SWNT electrodes
and excellent rate capabilities with 100% capacity retention after 2500 cycles at 5 A g−1.

2. Materials and Methods

2.1. Chemicals and Materials

Chemicals: All reagents, unless otherwise stated, were obtained from commercial sources
(NanoLab Inc, Waltham, MA, USA; Thermo Fisher Scientific Chemicals, MA, USA; Sigma-Aldrich,
Darmstadt, Germany; Duksan, Ansan, Korea) and were used without further purification. Specifically,
SWNTs (purity > 95%) with an average diameter of 1.5 nm were purchased from NanoLab Inc.
(Waltham, MA, USA). Carbon Black (Super P, Conductive 99+% metal basis) was purchased from
MTI Corp, CA, USA. Poly(vinylidene fluoride) (PVDF, average Mw~534,000 by GPC, powder),
1-methyl-2-pyrrolidinone (NMP, ReagentPlus®, 99%), sodium sulfate (Na2SO4, ReagentPlus®, ≥99.0%),
and nickel foil (thickness 0.1 mm, 99.98% trace metals basis) were purchased from Sigma-Aldrich.
Distilled water was purchased from Duksan. All chemicals were used as received in air.

2.2. Fabrication of Short-Cut Single-Wall Carbon Nanotubes

As-purchased SWNTs (5 mg) and lyophilized mussel adhesive protein (MAP, Mw~25,000) powder
(15 mg) were added to a glass vial and mixed with 20 mL of DI water. MAP was added to enhance
dispersion of CNTs in aqueous solution. Prior to cutting process, the aqueous mixture of SWNTs and
MAP was bath-sonicated for 1 h to obtain a homogeneous dispersion. For the sonication-assisted
cutting process, 110 W pulses were applied (3 s on; 1 s off) using a VC505 horn-type sonicator (Sonics,
CT, USA) for 10 h (Figure 1a). During sonication, the vial was held on a metal rack and immersed
in an ice bath to remove the ultrasonic energy absorbed. To separate the cut carbon nanotubes from
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the uncut nanotubes, cutting-processed mixture solution was centrifuged at 4000 rpm for 1 h (1580R,
Labogene, Seoul, Korea) and then c-SWNT suspension stabilized by MAP were obtained. Finally,
the c-SWNT solution produced was freeze-dried for Fourier Transform Infrared (FT-IR) spectroscopy
and Raman analyses.
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Figure 1. (a) The schematic of the synthesis process of short-cut SWNT (c-SWNT) and photographs
of carbon nanotube suspension before and after cutting process (b) Schematic illustration of the
supercapacitor structure (i) and electrodes using (ii) SWNTs and (iii) c-SWNTs. The short structure of
c-SWNT preferentially exposes the active edge sites during operation.

2.3. Material Characterization

The Raman spectra were scanned by an XperRam Compact confocal Raman spectrometer
(Nanobase, Seoul, Korea) with a laser wavelength of 405 nm. For the preparation of the samples
for Raman spectra, SWNTs and c-SWNTs were dispersed in ethanol by bath sonication, dropped
onto glass slides, and dried. For FT-IR spectroscopy analysis, the SWNT and freeze-dried c-SWNT
powders were deposited in a KBr pellet. The FT-IR spectra in the 400–4000 cm−1 range were
measured using an IFS-66/S FT-IR spectrometer (Bruker, Ettlingen, Germany) with 1.9 cm−1 resolution.
High-resolution transmission electron microscopy (JEM-3010, JEOL, Tokyo, Japan) was used to
investigate nanostructures of SWNT and c-SWNT.

2.4. Electrochemical Measurements

The electrochemical measurements of SWNT and c-SWNT electrodes were conducted in
a two-electrode system (Figure 1b). A slurry was first prepared by dissolving samples and
polyvinylidene fluoride (PVDF) (w:w = 9:1) in N-methylpyrrolidone (NMP). The slurry was cast
onto nickel foil and dried in a vacuum oven at 60 ◦C for 12 h. For aqueous electrolyte devices,
two pieces of the c-SWNTs cast onto substrates were placed on Teflon plates; platinum leads contacted
the back sides of the substrates for potentiostat (Biologic VMP3) connections; the two Teflon plates
were assembled into a sandwich with a separator (Whatman 8 µm filter paper) between them. The cell
assemblies were wrapped with parafilm, then dipped in the electrolyte solutions (1 M Na2SO4). For all
the cell types, the active area overlapped by both sample films was 1 cm2. Typical mass loadings for
measurements were ~0.3 mg cm−2.
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In the galvanostatic data, the IR drop at the upper cut-off potential and the slope in the discharge
curve are used to obtain the average power and energy densities. The capacitance (Ct) was calculated
using the following relationship

Ct = i t/∆V (1)

The specific capacitance is defined as the capacitance of a single electrode per unit weight. In this
work, an symmetric capacitor consists of a series of electrodes with half the total electrode weight.
Therefore, the specific capacitance (Cs) is calculated by using the following equation.

Cs = 4 Ct/m (2)

where i is the applied current (A), t is the discharge time (s), m is the total mass (g) of active materials
in both electrodes, and ∆V is the potential difference (V).

3. Results and Discussion

Short and edge-site activated SWNTs were prepared by the protein-assisted sonication cutting
process and fabricated into the electrodes to obtain an EDLC-type SC configuration (Figure 1).
As described in Figure 1, the active edge-sites of c-SWNTs become part of the effective surface area for
storing ions from the electrolyte, leading to the high specific capacitances of the SCs. To compare the
microstructure and chemical composition of c-SWNT and SWNT, various analysis techniques were
used, including High-resolution transmission electron microscopy (HR-TEM), Raman spectroscopy,
and FT-IR.

The HR-TEM images show the morphologies of c-SWNTs and SWNTs (Figure 2).
The as-purchased SWNTs (Figure 2a) show bundles of SWNTs, mainly composed of SWNTs. However,
after the sonication-assisted cutting process, the c-SWNTs (Figure 2b) show unbundled individual
short CNTs with a MAP-coated sidewall. Isolated c-SWNTs of short length (Figure 2c) are seen with
additional edge sites induced by the sonication process.
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Figure 2. The HR-TEM images of (a) as-purchased SWNTs; and (b,c) functionalized c-SWNTs after
sonication cutting.

In carbon-based materials such as SWCNTs, Raman spectroscopy is a powerful tool to recognize
ordered and disordered (damaged) structures [28]. As shown in Figure 3, the peak corresponding to the
D band around 1353 cm−1 is increased in the c-SWNT samples, demonstrating that tailoring the SWNTs
to shorter lengths generates the defects seen by the D band. The ratio of the D/G bands (ID/IG) indicates
the degree of disorder, related to the shortened SWNTs with edge-site defects. The ID/IG intensity ratio
in c-SWNT (0.285) is higher than in the SWNTs (0.024). While both SWNT and c-SWNT show a G’ band
presenting defect free sp2 carbon [29], this result indicates that exposing the functionalized edge-site
by a cutting process introduces a relatively higher level of disordering compared to pristine SWNTs.
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Figure 3. The Raman spectra of SWNT and c-SWNT.

During the cutting process, it is expected that the surface functionalities of SWNTs will be changed.
The FT-IR spectra of SWNT, MAP, and c-SWNTs exhibited in Figure 4 demonstrate the functionalization
of edge sites and sidewalls that occurs in the sonication-assisted cutting process. The FT-IR spectra of
pristine SWNT show a wide absorption band around ~3500 cm−1 (O–H) and weaker absorption peaks
at ~2900 cm−1 (C–H), ~1740 cm−1 (C=O), and ~1600 cm−1 (C=C). The weak absorption peaks around
~3500 and ~1740 cm−1, corresponding to hydroxyl and carboxyl groups, respectively, indicate low
functionality of pristine SWNT [30,31]. In comparison, the c-SWNT spectrum shows larger absorption
peaks than SWNT at ~3500 and ~1740 cm−1, and the peaks at 2900 and 1660 cm−1 (corresponding
to graphitic structure) show similar intensity. This is attributed to both presence of MAP and the
formation of additional functional groups on c-SWNTs. The absorption peak of C–N (~1385 cm−1) in
the c-SWNTs sample is much lower than in the sample with MAP alone. It indicates that additional
hydroxyl and carboxylate groups at edge sites in the c-SWNTs were produced by the sonication-assisted
cutting process [30,31]. It makes the absorption peak intensity of increased functional group relatively
stronger than that of the C–N bond as shown in the FT-IR spectrum of c-SWNT.
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To confirm the morphological advantages in SC performance arising from c-SWNT electrodes,
the electrochemical properties of c-SWNT and SWNT electrodes were evaluated using a two-electrode
configuration with an aqueous electrolyte. Electrodes with the same mass loading were assembled in
sandwich type SC devices with a 1 M Na2SO4 aqueous solution (Figure 1b). Figure 5 shows the cyclic
voltammetry curves of the SWNT and c-SWNT electrodes, taken in the range 0 to 1 V at scan rates
of 5 to 100 mV s−1. Generally, the SC devices using SWNTs and c-SWNTs show almost rectangular
cylclic voltammetry (CV) curves, corresponding to EDLC-type SC devices operating by electrostatic
adsorption of ions. With the SWNTs, the shape of the CV curves is distorted by the overpotential near
1 V when charging at all the scan rates used. In contrast, the c-SWNT SCs present rectangular CV
curves through the range of measurement conditions, without overpotentials even in the high potential
region, indicating that electrostatic absorption of ions is increased by the additional exposed active
sites. It is also significant that the area of the CV curves for the c-SWNT SCs is remarkably enlarged
(note the different current scales in Figure 5) compared to the SWNT SCs; in general, the areas of CV
curves indicate the specific capacitance of the two-electrode SC devices.
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Figure 5. The CV curves of (a) SWNT electrodes and (b) c-SWNT electrodes at various scan rates from
1 to 100 mV s−1. Note the different current scales in (a,b).

Galvanostatic charge and discharge tests of SWNT and c-SWNT electrodes were performed
at current densities from 0.2 to 30 A g−1. For a constant current density between 0.2 and
3 A g−1, the SWNT and c-SWNT electrodes exhibit a linear charge/discharge profile, without a
plateau signifying the redox reactions between materials and ions (Figure 6). As expected from
the charge/discharge behavior displayed in the CV curves (Figure 5), an overvoltage is seen
in the discharge profiles of the SWNT electrodes, indicating the capacity degradation from the
re-stacking of electrode materials (Figure 6a). On the other hand, the c-SWNT electrodes show
stable charging behavior and a significantly increased discharge time, indicating the enhanced specific
capacity of c-SWNT electrodes resulting from the increased number of active edge sites (Figure 6b).
The charge/discharge profiles of the c-SWNT electrodes again correspond to the behavior seen in the
CV curves of Figure 5.

To further evaluate the performance of devices at realistic scan rates, the rate capabilities of SWNT
and c-SWNT were investigated by gravimetric measurements at current densities from 0.2 to 30 A g−1

(Figure 7). The highest specific capacitances of SWNT and c-SWNT electrodes were observed to be
18.94 and 127.68 F g−1, respectively, at 0.2 A g−1. Even at the highest current density used (30 A g−1),
the specific capacitance of the c-SWNT electrodes is 58.8 F g−1, while the SWNT electrodes show a
severely degraded capacitance of 3.3 F g−1. The defects or edge sites of the nanocarbon materials
stimulate ion adsorption by the relatively active surface energy. It is notable that the number of defects
and edge sites increased during the c-SWNT cutting process, leading to the dramatically enhanced
specific capacitance of SCs despite the re-stacking problems of SWNTs, as presented in Figure 1b.
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Figure 7. The rate capabilities of SWNT and c-SWNT electrodes at current densities from 0.2 to
30 A g−1.

Typically, with carbon-based electrodes, the capacity retention of SCs is exceptionally stable over
thousands of charge/discharge cycles. SCs specifically using CNTs also generally show stable cycling
performance. Figure 8 shows the cycle stabilities of SWNT and c-SWNT SCs, tested at a current density
of 5 A g−1 for 1500 cycles and then at 1 A g−1 over a further 1000 cycles. It is not surprising that SWNT
SCs exhibit capacitance retention over 2500 cycles without degradation. With the c-SWNTs, the SCs
show an excellent long-term stability that is comparable to the SWNT SCs. It should be noted that
the increased specific capacitance of c-SWNT SCs at these current densities is another robust property
of carbon materials, and survives the additional fabrication step for c-SWNTs. The SWNT cutting
process exposes additional active sites and enhances the electrochemical performance, overcoming the
capacitance loss resulting from the re-stacking phenomenon during electrode fabrication. Moreover,
the superior intrinsic properties of CNTs are maintained through the cutting process.
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Figure 8. The cycle retention of SWNT (blue) and c-SWNT (red) electrodes at a current density. The first
1500 cycles were performed at 5 A g−1, followed by an additional 1000 cycles at 1 A g−1.

4. Conclusions

In conclusion, shortened c-SWNTs with additional active sites from the exposed tube edges
have been fabricated from SWNTs using a sonication-assisted cutting process for high performance
SC electrodes. Normally, the CNT-based SCs show a degraded specific capacitance, since the ion
adsorption is interrupted by the re-stacking of nanotubes, which induces blocking of the active surfaces.
Meanwhile, the cutting process of SWNTs, resulting in c-SWNTs, introduces additional active edge sites
for ion adsorption; these lead to improved electrochemical properties by counteracting the re-stacking
effects. Moreover, the original properties of carbon materials are maintained in c-SWNT, introducing
long-term stability. The SCs using c-SWNTs exhibit a 7-fold higher specific capacitance (127 F g−1)
compared to SCs using SWNTs, a high rate capability for current densities from 0.2 to 30 A g−1,
and an excellent cycle stability (100% capacitance retention after 2500 cycles). This work suggests that
sonication-assisted cutting is a simple strategy to enhance the electrochemical properties of CNT-based
electrodes for SCs.
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