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Abstract: The granulometric characterization of synthetic amorphous silica (SAS) nanomaterials
(NMs) still demands harmonized standard operation procedures. SAS is produced as either
precipitated, fumed (pyrogenic), gel and colloidal SAS and these qualities differ, among others,
with respect to their state of aggregation and aggregate strength. The reproducible production
of suspensions from SAS, e.g., for biological testing purposes, demands a reasonable amount of
dispersing energy. Using materials representative for each of the types of SAS, we employed ultrasonic
dispersing (USD) at energy densities of 8–1440 J/mL and measured resulting particle sizes by dynamic
light scattering and laser diffraction. In this energy range, USD had no significant impact on particle
size distributions of colloidal and gel SAS, but clearly decreased the particle size of precipitated and
fumed SAS. For high energy densities, we observed a considerable contamination of SAS suspensions
with metal particles caused by abrasion of the sonotrode’s tip. To avoid this problem, the energy
density was limited to 270 J/mL and remaining coarse particles were removed with size-selective
filtration. The ultrasonic dispersion of SAS at medium levels of energy density is suggested as
a reasonable compromise to produce SAS suspensions for toxicological in vitro testing.

Keywords: nanomaterials (NMs); nanostructured; synthetic amorphous silica (SAS); ultrasonic
dispersing (USD); energy density; sample preparation; in vitro testing

1. Introduction

Modification of physico-chemical properties of nanomaterials (NMs) or nanostructured materials
allows the control and variation of design, development and improvement of new products.
Synthetic amorphous silica (SAS) comprise an important group of NMs, which are added to industrial
as well as consumer products such as cosmetic or foods [1–7] within which they serve e.g., as stabilizers,
thickeners, pigments, flow enhancing agents, or UV absorbers [3,8–10]. Based on some concern
regarding possible health impacts and safety risks of NMs, legal authorities request the toxicological
analysis of SAS NMs by means of in vivo and in vitro studies [11–15].

Generally, ultrasonic dispersing or separation has been used for sample preparation of
nanomaterials for safety assessment [16]. These studies can support the optimization of nanosynthesis
or nano-applications for the sake of a “Green Synthesis of Nanomaterials”. One example for such
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green nano-application of amorphous silica in entomology and parasitology as a nanopesticide has
been considered safe for humans because of the specific mechanisms of action [17].

An important aspect of exposure and toxicological analyses is the characterization of NMs with
respect to particle size. Most SAS occur in an aggregated state with particle sizes ranging from
nanometer-sized primary particles to micrometer-sized aggregates or agglomerates [18–20]. However,
the sample preparation for a specific in vitro test should consider the particle size-distribution which
is of relevance for a given exposure pathway [21–24]. For example, inhalation of particles into the
human respiratory tract leads to a fractionation of particles: larger agglomerates are deposited in the
nasopharyngeal region (5–30 µm), small agglomerates are partially deposited in the tracheobronchial
region (1–5 µm), and only small (<1 µm) and nano-sized materials (1–100 nm) may penetrate into the
alveolar region of the lung [25–30]. Thus, toxicity testing of NMs using in vitro lung models demands
the preparation of properly suspended samples under defined conditions.

In general, studies on environmental and health risk assessment focus on transport and deposition
of NMs in real-life exposure scenarios. Both processes are governed by the mobility of aggregates and
agglomerates, for which reason the size of aggregates and agglomerates needs to be measured. This is
different from the nanomaterial definition recommendation of the European Commission, which is
based on number-weighted distribution of the minimum size of isolated particles or constituent
particles within aggregates and agglomerates [31,32].

The analysis of nanomaterials (NMs) and nanostructured materials requires standard operation
procedures (SOPs) for the preparation of suspension samples to ensure defined granulometric
states [33–35]. Therefore, the preparation and analysis of nanomaterial suspensions needs a high degree
of standardization with respect to primary sample preparation (stock suspension), secondary sample
preparation, conditioning (e.g., adjusting suspension composition or concentration), sample splitting
and finally measurement/interpretation. All these steps need to be considered for the characterization
of liquid-suspended powders and for the comparison of different SOPs in view of their reproducibility.
Although wetting and low energy dispersion of SAS powders in the suspension are substantial
components of (primary) sample preparation, further ultrasonic dispersing (USD) is needed as it is
the most versatile method to disintegrate large particle agglomerates into small particle aggregates
or primary particles. At the same time, stabilization and homogenization of the dispersed particles
are necessary.

USD is a rather intense type of dispersing, which relies on the hydrodynamic stress caused
by collapsing cavitation bubbles. As USD can be performed with different types of equipment
(e.g., ultrasonic bath, high-power probe sonicator, or cup-horn sonication) methods ensuring its
reproducibility are mandatory. Several studies have shown that the energy density (measured in J/mL)
serves as a well-suited parameter for obtaining a largely identical degree of USD of nanomaterials
among different laboratories [23,36,37]. Of note, the application of different ultrasonic dispersing
methods (e.g., variation of the sonotrode geometry) and parameter settings (e.g., sonication time
and vibration amplitude) requires the application of the energy density concept, applicable to
ultrasonication, rotor-stator systems [37,38] or high-pressure dispersing [39–41]. In all these cases,
the ultrasonic dispersing energy density can be used as a main parameter for comparing available and
new sample preparation protocols or SOPs.

To achieve a reproducible particle size analysis, it is necessary to use adequate sample preparation
techniques. The USD facilitates the disintegration of submicron agglomerates, which are therefore
of special relevance for the preparation of stable and homogeneous distribution of particles in the
suspension and contribute to achieve a stable dispersion. The particles are under interaction of different
dispersion forces which control their random dispersion in the sample volume. The energy density
has been used in Table 1 to compare several studies, which are developed for the application to
nanostructured materials).
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Table 1. Published protocols of ultrasonic dispersing (USD) specifically designed for application to
nanostructured materials; characteristic parameters including the (range of) inserted energy density.

Protocol Sample Volume Dispersing Time (Calorimetric) Energy Density

Tantra 2016 [42]; Pradhan 2016 [43] 6 mL 16 min 1176 J/mL

Rasmussen et al., 2013 [35] 15 mL
10 mL

10 min
16 min

500–400 J/mL
2500 J/mL

Taurozzi et al., 2012 [44] 50 mL 5 min 300 J/mL
Jensen et al., 2011 [33] 6 mL 16 min 3140 J/mL
Bihari et al., 2008 [45] 1 mL 1 min 420 J/mL

Mandzy et al., 2005 [46] - Time frames (2 h) 5700 J/mL
Pohl et al., 2005 [37] 10–42 mL 17–630 s 400–30,000 J/mL
Pohl et al., 2004 [47] 3–6 mL - 100–2000 J/mL

Table 1 shows that the energy densities used in several recent studies to disperse nanomaterials differ
by more than two orders of magnitude. This raises the question, as to which extent they influence the
results of particle size measurement. Previous studies on different grades of NMs such as SiO2, Al2O3,
or TiO2 have shown that even with a comparatively high energy density of up to 5 kJ/mL a maximum
dispersion cannot be achieved for all materials [20]. However, as administration of such energy densities
requires extensive cooling of the samples and prolonged periods of ultrasonic treatment, we were seeking
for a reasonable compromise to achieve an acceptable dispersion of nanomaterials.

In this paper, we examine the effect of USD energy on the dispersion of SAS and characterize
resulting particle size distributions (PSD). Despite their identical chemical composition, SAS products
show considerable variations with respect to the synthetic routes, particle morphology, and product
properties. The synthesis of silica is realized either in aqueous solution based on sodium silicate
solution or in gaseous phase from SiCl4 [48,49]. The types of silica originating from silica
synthesis processes in aqueous solution are silica gel (SG), precipitated silica (PS) and colloidal
silica (CS). Fumed silica (FS), also referred to as pyrogenic silica, is synthesized from gaseous phase.
SAS products are nanostructured NMs [46] as they consist of aggregates and agglomerates of nanosized
constituent particles (FS, PS and SG, cf. [50]) or well-dispersed nano-objects (CS). Accordingly,
the preparation of suspensions of FS, PS and SG requires defined dispersion procedures for their
use, e.g., in toxicity studies, and characterization, whereas this is not really necessary for colloidal
silica [19,20]. Furthermore, the different types of silica have a characteristic morphology due to their
varied synthetic processes. This is an important issue that needs to be considered for comparison and
data interpretation (e.g., reproducibility, effectiveness).

2. Materials and Methods

2.1. Materials

This study analyzed SAS products, representative for FS, PS, SG and CS, respectively. While FS,
PS, SG were provided as untreated hydrophilic powders, CS was provided as an aqueous suspension.
Important physico-chemical properties are summarized in Table 2.

Table 2. SAS properties.

SAS Type
Internal Code

Fumed Silica
F-3

Precipitated Silica
P-2

Silica Gel
G-1

Colloidal Silica
C-1

BET 1 (m2/g) 300 440 700 200 2

solid content for suspensions (wt.-%) - - - 40
pH 3 5 6.5 4.4 9.7

electric conductivity (µS/cm) at 25 ◦C 4 160 55 4771.6
1 BET: Surface measured according to Brunauer, Emmet and Teller [51,52]. 2 measured from freeze dried material.
3 suspended in ultra-pure water (1 wt.-%, 25 ◦C).
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Figure 1a–c show SEM (JEOL Ltd, Tokyo, Japan) images of typical aggregates of FS, PS and
SG [50]. In contrast, CS (Figure 1d) contains isolated spherical nanoparticles, which have gathered into
an agglomerate-like structure upon drying on the TEM grid.
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Figure 1. SEM and TEM images of different silica types. (a) fumed (pyrogenic) silica (opened fractal-like
aggregates), (b) precipitated silica (compact fractal-like aggregates), (c) silica gel (compact and
microporous fractal-like aggregates) and (d) colloidal silica (isolated spherical nanoparticles or small
aggregates, here dried on TEM grid to opened agglomerates).

2.2. Instruments and Procedures for Sample Preparation

To prepare stock suspensions of SAS 1 wt.-% of silica powders (FS, PS, SG) were dispersed in
100 mL de-ionized water (18.3 MΩcm, 0.2 µm filtered). To avoid re-agglomeration, the particles
were placed in a liquid environment that ensured high surface charges. The pH value of prepared
silica suspension is far from the isoelectric point of silica (e.g., pH 1.8–2.5) and it has a low electric
conductivity (see Table 2) [53–55]. Powders were dispersed by different treatments: Firstly, by means
of a paddle stirrer (PS) (model RW 11 basic, IKA, Staufen, Germany), which administered the
lowest input of mechanical energy into the suspension and which was used for the homogenization
of SAS suspensions. Of note, the geometric size of the paddle stirrer and the sample beaker as
well as stirring velocity ensured hydrodynamic equivalence to the “paddle apparatus” specified in
Ph. Eur. 5.7. (2006) [56]. Secondly, by means of a turbulent shear rotor stator (RS) (Ultra-Turrax T25,
IKA) which was used to achieve advanced dispersion and to investigate changes of PSD of different SAS
types upon progressive dispersion energy. The RS provides shear forces, which cause shear stress on
particle agglomerates. Thirdly, by means of immersion horns (three different instruments, see Table 3)
which were used in most experiments [33–35]. The sonotrode or horn is in direct contact with the
suspension and the dispersion effect is associated to cavitation, which occurs in highly intensive sound
fields. Furthermore, the cavitation causes the formation of vapor cavities in a liquid (bubbles) which
steadily grow to a critical size, at which they turn instable and implode [20]. This implosion produces
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high temperature and rapid micro-jets, which exert mechanical stress to the particles close to the
formed bubble [57]. This mechanical stress leads to the fragmentation or at the least to the erosion
upon the direct contact with the imploding cavities [58,59].

The USD equipment consisted of three different instruments equipped with different sonotrodes
(a few mm up to a few cm) (see Table 3), which were operated at frequencies in the range of 20 kHz to
100 kHz. Instruments had a nominal power consumption of a few Watt to approximately 1 kW [18].
The calorimetric energy input was measured at different dispersing instruments. Most of them work
at frequencies in the range of 20 kHz. In pilot experiments, various tip diameters of the sonotrodes
were selected according to the geometry of the beaker and the sample volume required by the sample
preparation protocols.

Table 3. Technical data of ultrasonic dispersion instruments operated at approximately 20 kHz.

Model Vibra-Cell 72412 1 UDS751 2 SONIFIER 450D 3

Code V T B

company Sonics and Materials Topas GmbH Branson Ultrasonics
normal capacity (W) 600 200 400
tip diameter (Ø, mm) 13 19 3 7 14 5 13

amplitude (%) 0–100 0–100 10–100
1 Vibra-Cell 72412 (Sonics & Materials, Newtown, CT, United States). 2 UDS751 (Topas GmbH, Dresden, SN, Germany).
3 SONIFIER 450D (Branson Ultrasonic Corporation, Danbury, CT, United States).

For the particle size analysis of all silica types in this study one USD equipment was selected,
the generator Vibra-Cell 72412 (Sonics and Materials; 20 kHz, nominal power: 600 W together with
a 19 mm tip diameter solid probe. The tip of the probe was replaced for each series of dispersing
experiments. USD was performed at maximum amplitude (100%) in a pulsed mode (2s:2s) with the
probe being uniformly immersed in the sample. The same type of glass beaker was employed for all
samples; the beakers were placed in cooled water during the USD. Even though, samples were steadily
heated-up with ongoing USD, for which reason the USD was interrupted after a maximum of 4 min to
cool down the complete the sample and the ultrasonic probe. This procedure ensured that the sample
temperature stayed below 33 ◦C [20].

2.3. Instruments for Particle Size Analysis

USD leads to deagglomeration and disintegration of aggregates and the corresponding change in
the granulometric state was quantified by laser diffraction (LD) and dynamic light scattering (DLS).
However, these standard analytical techniques are based on mathematical models, which are not
perfectly applicable to the examined particle systems, e.g., because they assume spherical particles
(e.g., Stokes-Einstein relation and Mie theory for DLS), or because they do not cover the whole size
range of broad distributions (e.g., Fraunhofer diffraction theory for LD) [18–20,60,61]. To avoid these
technical limitations and for a better interpretation of measured data it is advantageous to apply both
techniques to well-adapted dilutions of the same sample.

LD measurements were carried out with a HELOS KR (Sympatec, Clausthal-Zellerfeld, Germany)
for angular ranges below 35◦ (i.e., forward scattering). Within this study an angular range of 0.1◦ to
9◦ (measurement range R3) was used, which is sensitive for particles of 0.5 µm to 175 µm, but which
is insensitive to nanoparticles (x ≤ 100 nm). These measurements were rather insensitive to small,
weakly scattering particles << 1 µm.

To quantify particle sizes in sub-micrometer range, DLS measurements were conducted.
The employed instrumentation, HPPS (Malvern, UK), bases on backscattered (173◦) and sideward
scattered light, respectively. Measured DLS signals (i.e., autocorrelation functions) were analyzed with
inversion procedures, which compute complete size distributions, and cumulant analysis. The latter
yields a polydispersity index, PDI, and a characteristic mean particle size, xcum, which is the harmonic
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mean of the intensity-weighted size distribution. The samples are filled in closed cuvettes (4 mL),
which are placed in the temperature-controlled sample holder at least 15 min before the measurements.

2.4. Estimation of the Calorimetric Energy Input

The effectivity of the ultrasonication, in comparison with other dispersion procedures regarding
size reduction, demands the necessity to evaluate the applied acoustic energy per unit suspension
volume (EV) [18,20,23,37,46]. The calculation of ultrasonic dispersion energy cannot be calculated
directly. There are two ways to estimate the inserted acoustic energy. One way is the estimation
from electrical energy consumption (EV,el) and the other possibility is through the generated heat
after implosion of bubbles (EV,cal). The electrical energy consumption depends on many factors:
transformation of energy of ultrasonic dispersions instruments (e.g., normal capacity, range of
frequencies, types and probe diameter) that must be considered for comparison and validation.
Furthermore, another important point to consider is the acoustic reflections inside the probe
depending on, for example, sample volume, density and the propagation velocity of sound of liquid
(acoustic impedance) [62].

This study uses the calorimetric energy input as decisive parameter for the effect of USD. Therefore,
the USD devices needed to be calibrated regarding the calorimetric power input for the setup and
settings (sample volume, horn diameter; nominal ultrasonic amplitude) employed in dispersing the
SAS samples. The calibration comprises the evaluation of temperature increase by ultrasonication of
a defined volume of de-ionized water. In this study, USD was conducted at 100 mL suspension sample
placed in a 150 mL cylindrical borosilicate beaker. Please note that other studies worked with higher
volumes (e.g., 500 mL, [23,34]) or smaller ones (e.g., 6 mL [33,42,43]). A further difference to other
studies is that the beaker was placed in insulating foam, to minimize heat exchange with environment.
The whole setup, including the ultrasonic probe as well as a thermometer with short response-time,
was allowed to thermally equilibrate. Then ultrasonication was started and the temperature within the
beaker was recorded as function of time.

The calorimetric energy input into a suspension sample by ultrasonication can be calculated from
the heat production rate Pcal which is a function of the dispersion time tdisp. The former parameter is
valid for defined conditions of ultrasonication, i.e., for defined sample properties and USD settings.
It can be determined by specifically designed experiments that measure the temperature increase when
sonicating the particle-free dispersion medium (e.g., water). Furthermore, it is necessary to consider
the mass and specific heat of the beaker to have a correct determination of heat production and to
evaluate the initial slope of temperature increase, which needs to be less than 4 Kelvin (∆T ≤ 4 K).
Furthermore, the following proposed equation to estimate the calorimetric energy input assumes that
the sonotrode has a zero heat capacity and that there is no heat exchange with the environment:

Pcal = (mwcp,w + mbcp,b) · ∆T/tdisp (1)

where mw denotes the mass of liquid, mb denotes the mass of beaker, cp,w specific heat of
water, cp,b specific heat of beaker, ∆T the temperature increase and t the dispersion time [63,64].
The calorimetric energy density can be determined as follows:

EV,cal =
Pcal · tdisp

V
= (mWcp,W + mBcp,B) · ∆T/V (2)

with V being the suspension volume.
The energy density is considered to be a most important process parameter when dispersing

suspensions and emulsions. Frequently, a power-law relationship can be established between average
particle size x and energy density EV,cal (e.g., [47]):

x ∝ E−b
V,cal (3)
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where “average particle size” can be any characteristic distribution parameter (e.g., median size or
arithmetic mean) referring to a defined type of quantity, in which the size distribution is weighted
(e.g., number, volume or scattering intensity). The exponent b describes the material’s dispersibility
under the specified conditions.

Finally, there are some assumptions to estimate values for calorimetric calibration of ultrasonic
instruments. The first assumption is the uniform temperature of water and beaker, second—zero heat
capacity of ultrasonic probe and third—no heat transfers out of the system beaker-water.

3. Results and Discussion

3.1. Calorimetric Calibration of Probe Sonication

While the ultrasonic wave propagates through the dispersion medium, its energy is absorbed
and converted into heat [65,66]. Figure 2 exemplifies this progressive heating during USD for
a non-insulated beaker. The images give an impression of how the heat generated upon ultrasonication
is transferred from the sonotrode into the surrounding medium and associated masses. Therefore,
it is important to consider some issues such as sample volume, or isolating foam to achieve a correct
calorimetric calibration of probe sonication, as explained in the proposed protocol (see Section 2.4).
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Figure 2. Progressive heating of the sonotrode, sample fluid, and beaker in the course of USD.
Images were captured with a thermal imaging camera (Seek Thermal) after different dispersing periods;
(a,b): 0 s, (c): 30 s, (d): 60 s. Temperature (in degree Celsius) is shown on a pseudo-color scale
whose range was automatically adjusted to the temperature peak (Tmin/Tmax) of the measurement
(i.e., (a) 17 ◦C/22 ◦C, (b) 17 ◦C/23 ◦C, (c) 17 ◦C/26 ◦C).

The calorimetric calibration was calculated for different ultrasonic dispersing instruments
(according to the protocol in Section 2.4) to compare their heat production after setting of different
parameters (see Section 2.2). The calorimetric measurements delivered the results in Figure 3.
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3.2. Sample Preparation by Probe Sonication

3.2.1. Impact of USD on Particle Size Distribution of SAS

Previous studies have shown that the PSD of, e.g., FS may be highly polydisperse [20,54]) and
covers a wide range from of a few nanometers up to several micrometers [18–20]. As outlined above
(Section 2.3), the appropriate granulometric analysis of such samples requires a combination of LD and
DLS. This section addresses the effectiveness of ultrasonic dispersing on particle size of silica types
measured with both techniques.

Suspensions of the SAS types were prepared by a combination of dispersing procedures and
defined calorimetric energy densities (EV, J/mL). Depending on the instrumentation (see Section 2.3)
dispersing energies were weak from propeller stirrer (PS), moderate from rotor-stator (RS), or intense
from ultrasonication (US, different dispersing energies) and the selected calorimetric energy densities’
values are based on the calorimetric calibration of probe sonication (see Figure 3). The calorimetric
energy density of the US treatment ranged from 8 J/mL through 18 J/mL and 270 J/mL to a maximum
energy input of 1440 J/mL. This stepwise increase of energy input allows for a comprehensive
characterization of SAS with respect to particle size and morphology.

Figures 4–6 show the LD measurements of the PSD results of the transformed distribution density
of upon increasing EV,cal for PS, FS, and SG (see Section 2.1). The transformed distribution density
represents in accordance with ISO 9276-1:1998 provide the differential size distribution on a log scaled
abscissa. Areas under the curve represent the volume portions of the size classes [67]. The result of
a long-term sedimentation of silica suspensions (after five months) is shown in parallel.

Precipitated silica (PS, 400 m2/g, 1 wt.-%) shows a clear tendency of deagglomeration by increasing
dispersion energy (Figure 4a). Especially the presence of coarse, micrometer-sized agglomerates was
diminished, and this effect started mostly at 18 J/mL. In line with these results the sedimentation profiles
of ultrasonicated PS suspensions show an increasing degree of opacity upon 270 J/mL and 1440 J/mL
(Figure 4b), suggesting the presence of slowly settling, light scattering particles in the sub-micrometer
range. However, although the zone of opacity was wider upon 1440 J/mL, the volume of the white matter
at the bottom was similar.

Largely similar to PS was fumed (pyrogenic) silica (FS, 300 m2/g, 1 wt.-%) deagglomerated by
increasing USD energy (Figure 5a). The deagglomeration of large particles was achieved already with
a moderate dispersion (RS) and increased further upon administration of USD energy. Interestingly,
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the mono-modal PSD of FS became bimodal upon 18, 270, and 1440 J/mL, such that a fine and a large
fraction could be distinguished (Figure 5a). Of note, the large fraction generated by 270 J/mL and
1440 J/mL comprised larger particles as compared to the fraction induced by 18 J/mL. This suggests
that elevated energy levels at least in part can provoke an agglomeration of FS. The effect was most
obvious at an USD energy of 270 J/mL. These results confirm previous studies, where the coarser
particles appeared at energy density levels above 171 J/mL [20]. The sedimentation profiles of FS at
higher dispersion energies showed a similar degree of opacity in the supernatant, but an increased
volume of the white sediment. This suggests that high USD energy leads to the formation of larger
particles from the same mass of FS (see Figure 5b).
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Figure 5. Particle size distribution of FS (300 m2/g) dispersed by different procedures. (a) Size distribution
measured by laser diffraction spectroscopy plotted as the transformed distribution density (q3*). Weak (PS),
moderate (RS) and intense (US) dispersion with increasing ultrasonic energies (indicated in the diagram)
were employed. (b) Silica suspensions after five months (left 1 J/mL, middle 270 J/mL, and right 1440 J/mL).

As can be seen in Figure 6a, the PSD of silica gel (SG, 700 m2/g, 1 wt.-%) remained unchanged
upon increasing energy density. SG consists of compact (dense) and microporous fractal-like aggregates
(see Figure 1), which appear to be insensitive to high USD energies and undergo a rapid sedimentation
of particles (by median x50,3 = 6 µm), irrespective of USD treatment (see Figure 6b), although both
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ultrasonic treatments led to a similar degree of opacity of the supernatant which may be indicative of
smaller particles (not measurable by LD).
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measured by laser diffraction spectroscopy plotted as the transformed distribution density (q3*). Weak (PS),
moderate (RS) and intense (US) dispersion with increasing ultrasonic energies (indicated in the diagram) were
employed. (b) Silica suspensions after five months (left 1 J/mL, middle 270 J/mL, and right 1440 J/mL).

The effect of increasing dispersion energy on particle size of PS, SG and FS, as measured by LD,
is compared in Figure 7, which shows the trend analysis for the x50,3 and x99,3 quantiles of the volume
weighted size distribution. Whereas the particle size of SG is not altered by increased dispersion
energy, particle size of PS is constantly lowered. In the case of FS, only the x50,3 value reflects the
decrease in particle size, whereas the x99,3 is inconsistent and shows an upwards trend demonstrating
the coarsening or reagglomeration upon high USD energy. Figure 8 shows a comparison the stability of
intensely dispersed silica types at 1440 J/mL after long-term sedimentation (5 months). The different
sediment degrees of silica types support the LD results and provide a subjective information about
sedimentation velocity in the gravitational field of the earth.
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size and PDI. The effect started at a low energy density of 8 J/mL and was found to be strongly 
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Figure 8. Intensely dispersed SAS samples (USD, EV,cal: 1440 J/mL) after long-term sedimentation
(5 months): (a) PS; (b) FS; (c) SG.

Since LD is not sensitive for silica particles smaller than 1 µm [68], the characterization of
sub-micrometer particles (1 nm–10 µm) was carried out with DLS. Data of three silica types (FS, SG, PS)
was expressed as intensity-weighted size distribution, using the characteristic values mean size (xcum)
and the polydispersity index (PDI) obtained by cumulant analysis. Figure 9a compares the as result
calculated logarithmic normal distribution (LND) and shows the impact of 270 J/mL and 1440 J/mL on
particle size. In Figure 9b the Intensity-weighted transformed distribution density functions are shown.
While the particle size of SG and FS remains nearly unchanged in the lower size range, the long-term
sedimentation e cumulative size distribution curve of PS is shifted leftwards, indicating that particle
size had shifted to submicron and nano range (<1 µm). Fumed silica (FS) shows a minimal tendency to
increase the size of submicron particles upon high energy density.
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Figure 9. Particle size distribution (PSD) of amorphous silica suspensions dispersed by two different
ultrasonic dispersion energy densities (270 and 1440 J/mL). PSD was measured by dynamic light
scattering (DLS). FS: fumed silica, SG: gel silica, PS: precipitated silica. (a) Intensity-weighted sum
functions for different energy density values. (b) Intensity-weighted transformed distribution density
functions for different energy density values. Logarithmic normal distribution.

Figure 10a shows the granulometric state of colloidal silica (CS) over the full range of
dispersion energies as used in Figure 7. While stirring (PS, PS + RS) had no effect on particle
size, ultrasonic treatment surprisingly led to a larger and broader PSD indicated by an increase in
hydrodynamic size and PDI. The effect started at a low energy density of 8 J/mL and was found to be
strongly augmented upon higher USD energies. We found that wear particles from the sonotrode’s tip,
the larger of which appeared as a sediment at the bottom of the vial (Figure 10b), made a major
contribution to this effect. Due to the strong light scattering properties of such metal particles
(compared to the small and weakly scattering CS particles), even low amounts of wear particles
contaminate the light optic measurements. If this increase of the mean particles size would be caused
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by agglomerated colloidal silica particles, they would be visible as a sediment layer after 5 months.
In the case of silica gel scattering, intensity of the micrometer particles hides the contamination signals
during measurement whereas, after settling, the contamination is embedded in the silica sediment.
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DLS. (a) Mean particle size (xcum) and corresponding polydispersity index (PDI) as determined with
cumulant analysis. (b) Bottom view of a vial with an intensely dispersed colloidal silica sample (EV,cal:
1440 J/mL) taken after 5 months of gravitational settling.

3.2.2. Sample Contamination with Probe Sonication

Figure 11a,b show the effect of high dispersion energy on the sonotrode’s tip if delivered over
prolonged period. Wear particles ablated from the tip contaminate suspension and can observed
as a black sediment (i.e., coarse titanium particles) and/or as a well as a grey discoloration of the
suspension (Figure 11c). Figure 12 shows a SEM picture of sonotrode abrasion particles collected
from the bottom of silica suspension. As shown in a previous study, the abrasion of the ultrasonic
probe and sample contamination occurs in the moment of ultrasonication; the number of particles
increases linearly with time [20]. Furthermore, it was shown that in suspension of pyrogenic silica
(PS, 1 wt.-%) at a dispersion energy >171 J/mL sonotrode wear particles contribute to the PSD and
interfere with the sample analysis by LD [20]. Nevertheless, this widespread sonicator type is superior
to other indirect sonicator types (e.g., ultrasonic bath, cup horn) [36,69] due to its high effectiveness
of USD and with regard to the best possible disintegration of agglomerates and aggregates in a short
time [20]. Therefore, a restriction of the USD energy appears reasonable. To remove larger particles at
lower dispersion energy, e.g., from PS suspensions, we developed a dispersion protocol combining
stirring, USD and filtration steps (see Section 3.3).
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Figure 11. Comparison of new and used sonotrode with sonotrode abrasion as a consequence of long
ultrasonic dispersion time (a,b); sonotrode abrasion sediment on the bottom of a precipitated silica
suspension sample after high USD energy (c) (i.e., EV,cal: 1440 J/mL).
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3.3. Sample Preparation with Size-Selective Filtration

Testing the in vitro toxicity of nanomaterials requires that the size distribution of particles in
cell culture media is well defined. With respect to inhalation exposure, which may be tested by the
alveolar macrophage assay [24], larger non-respirable coarse particles need to be removed so that
a mass-per-volume- or surface-per-volume dose metrics can be applied [15]. Ideally, particle size
distribution should reflect inhalable fractions with aerodynamic diameters smaller than 4 µm. However,
as outlined above for paddle stirring (PS), this would require high ultrasonic energy and bears the risk
of metal particle contamination (see Figures 11 and 12). To circumvent this risk, a size classification
by controlled filtration (with 100% fines penetration) was developed, using a commercially available
nylon gaze with a pore size of nominally 5 µm (Bückmann, Germany). Figure 13 shows the grade
efficiency function T(x) demonstrating that glass spheres below 7 µm can freely permeate the filter,
whereas spheres larger than 15 µm were retained.
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The theoretical volume weighted cumulative distribution function of the filtrate Q3,f(x) was derived
from the experimentally determined grade efficiency function T(x) and the feed distribution Q3,i(x):

∆Q3, f(x) = (1 − T(x)) ·
(

∆Q3,i(x)
1 − ∑ T(x) · ∆Q3,i(x)

)
(4)
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In the next step ultrasonication and filtration where combined to prepare a suspension suitable
for in vitro testing. The method is shown exemplarily for the PS used in this study: the powder
was suspended (1 mg/mL) in de-ionized water by means of a magnet stirrer (700 rpm, 10 min).
Thereafter the PS sample was filtrated by gaze filter with a grade efficiency curve shown in Figure 13b
and a cut-off size of 11.5 µm. The filtrate of the silica sample was then dispersed with EV,cal: 18 J/mL
and EV,cal: 270 J/mL. Results were expressed in Figure 14a as cumulative particle volume curves
(Q3, green curve) and compared to the effects of progressive dispersion energy on the size distribution
of non-filtered PS (red curve).

Figure 14a shows the advantage of combined moderate ultrasonication by 270 J/mL with filtration
(green line) to remove particles larger than 11 µm in comparison with the high ultrasonic energy result
(red line), including possible sample pollution. LD results (Figure 14b) show that low energies
(i.e., weak dispersion (PS), moderate dispersion (RS) without ultrasonication) leave a considerable
amount of micrometer-sized agglomerates in the suspension, whereas ultrasonic dispersion with 8, 18,
270 and 1440 J/mL progressively reduced micrometer-sized agglomerates.
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4. Conclusions

The effect of dispersion energy on particle size distribution of nanomaterial suspensions depends
not only on a defined dispersion procedure (e.g., dispersion time, sample volume) but also on the silica
types (e.g., morphology).

Ultrasonic dispersion energy density is a main parameter for comparability of sample preparation
protocols. Sonication is limited by sample pollution with wear particles from the probe. Therefore,
upper limit dispersion energy density values must be determined. In the case of silica it is
recommended to apply dispersion energy density only up to 300 J/mL.

The resulting particle size distributions strongly depend on the type of silica. Fumed SAS reach
PSDs in the submicron range even at low values of ultrasonic energy density; continued sonication
leads to a steady, yet slight size reduction. Gel and colloidal SAS are hardly or even adversely affected
by increasing ultrasonic dispersion energies. The PSDs of precipitated SAS strongly depends on the
increasing ultrasonic dispersion energy, changing constantly to smaller sizes.

Additional size-selective filtration can remove the large and settling particles without the
risk of sample contamination by too high ultrasonic energy dispersion. A combination with the
above-described ultrasonic dispersion provides a general SOP for the preparation of well-defined
suspensions of SAS nanoparticles for in vitro toxicological tests.
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