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Liquid crystals are often identified with the development of the flat panel television and computer
screens that we all use on a daily basis. Despite their enormous success in this area, liquid crystal
research is by far not exhausted and has reinvented itself, spearheading into other fields of research,
due to their properties of self-organization, their fascinating optic and electro-optic properties, and their
easy deformability and reorientation via electric, magnetic, mechanical and other external fields. Novel
effects are being discovered, new modern and self-organized materials are constantly being developed
and a whole range of non-display applications is being proposed, which are on the borderline between
nanotechnology and soft condensed matter. Liquid crystals are also being employed as a vehicle
to study fundamental physical questions, and proceeding into the areas of biology, nature and life.
In this Special Issue of Nanomaterials, illustrative examples are introduced, which draw on aspects of
self-organization of liquid crystals, colloidal ordering of nanoparticles, and the formation of anisotropic,
liquid crystalline phases from nanoparticles. An exhaustive treatment of these topics up to about 2015
can be found in the two volume handbook edited by Lagerwall and Scalia [1].

Liquid crystals [2–4] are partially ordered, anisotropic fluids, which are thermodynamically
located between the three dimensional solid crystal and the flow governed liquid. They exhibit
orientational or low dimensional positional order of their long molecular axis or the molecular centres
of mass, respectively, which results in anisotropic physical properties, such as refractive index, viscosity,
elastic constant, electric conductivity, or magnetic susceptibility, while retaining the ability to flow.
Liquid crystals are part of the ever growing and increasingly important family of soft condensed
matter materials [5–9]. Two general classes of liquid crystals are mostly distinguished, thermotropic
materials [10,11], which exhibit the liquid crystalline state exclusively on temperature variation,
and lyotropic liquid crystals [12,13], where the formation of liquid crystal phases is achieved by
concentration variation of shape anisotropic dopant materials in an isotropic carrier or host fluid.
The latter type is most often composed from amphiphilic molecules in water, but can also be observed
by dispersing anisotropic colloidal particles in an isotropic liquid [14]. A classic example is that of
vanadium pentoxide, V2O5, which had already been shown about a century ago by Freundlich [15] to
be anisotropic. Nevertheless, also many other minerals and clays, lead to inorganic liquid crystals,
as has been reviewed by Sonin [16].

Thermotropic dispersions and lyotropic liquid crystalline behaviour have also been reported for
carbon based materials, for example involving single-walled and multi-walled nanotubes [17–22] for
electrically and magnetically addressable molecular switches. Also lyotropic graphene oxide [23–28]
has been explored in a variety of host liquids for possible electro-optic applications based on the
Kerr effect. Further reports discuss inorganic nanorods [29–33], ferroelectric particles [34–36] and
magnetic nanorods [37,38] and platelets for ferromagnetic nematics. Also the incorporation of
gold nanoparticles [39–41] into liquid crystals or indeed mesogenic molecules has become popular,
especially for applications in plasmonics. Furthermore, carbon materials such as fullerenes [42,43] are
also incorporated into liquid crystal forming molecules. The general reasons for dispersing colloids in
liquid crystals by a variety of different methods and procedures [44,45], are to tune the liquid crystal
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properties, to add functionality, or to exploit the self-organization of the liquid crystal and use the
order of the host as a template to transfer order onto dispersed nanomaterials.

The mechanical properties, dominated by extremely small elastic constants when compared to
solid state materials, are another of the characteristics of all liquid crystals. The fact that elastic constants
are very small, implies that topological defects in liquid crystals extend over large, macroscopic
distances, so that they can easily be observed in polarizing microscopy. This in turn leads to textures
with topological defects of strength s = ±1/2 (two-fold brushes) and s = ±1 (four-fold brushes), where
defects of opposite sign and equal strength attract each other and annihilate [46–48]. Defect annihilation
in liquid crystals is a means to study fundamental dynamical theories, collectively known as the
Kibble-Zurek mechanism [49,50] in an elegant way. From a more practical point of view, such defect
structures can be stabilized by confinement in one-, or two-dimensional arrays for optical elements [51]
or to act as biological surface sensors [52].

In the theoretical work of Holger Stark [53] and the experiments of Igor Musevic et al. [54] it
was shown that defects are also induced when micro-spheres are placed in a well oriented nematic
liquid crystal. Different types of defects can be observed for different anchoring conditions on
the micro-particles, called hedgehog and Saturn ring defects. Further, the attractive bipolar or
quadrupolar force between defects can also lead to the phenomenon of chaining, forming linear
chains of colloids and zigzag-shaped chains, respectively. This can also be observed for rod-shaped
colloidal particles [55,56]. Even two-dimensional arrays of nanomaterials can be formed, as was also
confirmed elegantly through the computer simulation of the group around Slobodan Zumer [57].
The field of colloidal interactions studied in liquid crystals was fuelled by the initial observations in the
pioneering work of Poulin et al. [58], who investigated nematic-water emulsions with water droplets
acting as colloidal particles and determining the force that attracts two droplet colloids [59].

It is thus clear that the fields of nanomaterials dispersed in liquid crystals, as well as that of
the formation of lyotropic liquid crystal phases by dispersing anisotropic nanomaterials in isotropic
host liquids will continue to grow and attract interest from a wider community. This will include
the synthesis of nanoparticle containing mesogens as much as the development of novel methods
of dispersion of nanomaterials in liquid crystal hosts, both thermotropic and lyotropic. Different
materials will be used, carbon based nanomaterials in zero-, one-, and two dimensions, minerals and
clays, and synthetic nanorods, as well as biological nanoparticles. Different functionalities will be
explored, ferroelectricity, ferromagnetism, semiconductivity, chirality, quantum dots, or plasmonic
properties. And experiments will be joined by theory and computer simulations to eventually produce
applications which will exploit the best of all areas, liquid crystals and nanomaterials, not only to
improve display applications, but also to generate novel applications in the fields of optics, sensors,
medicine and related fields.
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