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Abstract: A photocatalytic active CdS-TiO2 heterostructure composite was prepared by hydrothermal
method and its morphology and properties were characterized. Results indicate that the CdS
nanoparticles deposited on the surface of a TiO2 nanoparticles, which was in anatase phase.
The particle scale of both of the components reached approximately 15 nm. In comparison to pure TiO2

(410 nm), the light absorption edge of the heterostructure composite was 550 nm, which could extend
the light response from UV to the visible region. Under visible light irradiation, the degradation
efficiency of tetracycline hydrochloride by the CdS-TiO2 composite achieved 87.06%, significantly
enhancing photocatalytic activity than the as-prepared pure TiO2 and commercial TiO2 (Degussa
P25). This character is attributed to the synergetic effect of these two components in the absorption of
visible light.
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1. Introduction

As one kind of N-type semiconductor, titanium dioxide (TiO2) has been extensively studied for
its excellent properties, such as its low cost, chemical stability, non-toxicity, and high photocatalytic
activity [1–5]. Of these merits, photocatalytic application has attracted a great attention due to its
potential for efficiently exploiting solar energy to solve the global energy crisis [6,7] and environmental
pollution [8]. Nevertheless, it can only absorb ultraviolet (UV) light and cannot be excited by
visible light irradiation for its wide band gap energy (≥3.2 eV) [9] and fast recombination of
photogenerated electron-hole pairs [10,11]. To take full advantage of visible light, the light response
of the semiconductor must be extended from UV to the visible region. To accomplish this, efforts
have been made, such as metal doping [12,13], nonmetal doping [14–17], reducing its band gaps
by hydrogenation [18,19] and sensitizing with a low band gap semiconductor material [20–26].
Among previous methods, cadmium sulfide (CdS) nanocrystal was widely used to sensitize TiO2

for its high activity and quantum efficiency in the visible light region as a result of its reasonable
band-gap energy (about 2.3 eV) [27–31]. Another advantage for this combination of CdS and TiO2 is
that the photogenerated electrons in the conduct band of CdS can be transferred to the conduct band of
TiO2 while leaving holes in CdS, which effectively prolong the lifetime of the photogenerated charge
carriers [32–34].
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There are numerous reports about CdS-sensitized TiO2 of binary semiconductor composites,
most of which are about bulk-TiO2 and micro-CdS as well as how CdS plays a role in quantum
dots [27,32,35,36]. Although photogenerated electrons could be excited from valence band to
conduction band of CdS, it is difficult for these electrons to transfer to the conduction band of TiO2

as a result of the limited contact area between CdS and TiO2, leading to low photocatalytic efficiency.
Until now, little attention has been paid to the attempt of two components in a nano-scale particle.
Herein, we present a preparation of binary semiconductor composites, using Titanium oxysulfate
as titanium precursor. In this composite, CdS nanoparticles are uniformly decorated on the surface
of TiO2 and both particles are similar in size. CdS and TiO2 contacted closely in nano-scale rather
than aggregating respectively. This nanostructure provides a higher degree of contact area between
CdS and TiO2 than traditional binary CdS-TiO2 nanostructures and demonstrates high photocatalytic
activity in degradation within a tetracycline hydrochloride solution. Our research provides an insight
in designing highly efficient visible-light photocatalysts which are based on a heterostructure as well
as better understanding of the photocatalytic reaction mechanism.

2. Experimental Procedure

2.1. Raw Materials and Reagents

In this study, thioglycolic acid was purchased from Tianjin Guangfu Fine Chemical Research
Institute (Tianjin, China). Other reagents, including titanium precursor Titanium oxysulfate—sulfuric
acid hydrate (TiOSO4·xH2SO4·xH2O), ethanol, cadmium acetate, and sodium sulfide, were purchased
from Aladdin Chemical Co., Ltd. (Shanghai, China). All reagents were of analytical grade, without
further purification. Figure 1 shows scanning electronic microscope (SEM) images of titanium precursor
(TiOSO4·xH2SO4·xH2O).
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2.2. Preparation Method

2.2.1. Synthesis of TiO2 Nanoparticles

8.00 g of Titanyl sulfate (TiOSO4) was added to 145 mL absolute ethanol (molar ratio = 1:50) and
kept magnetic stirring for 24 h. After mixing evenly, 40 mL suspension was extracted and added
to a 50 mL autoclave. The solvothermal treatment in the autoclave was processed at 110 ◦C for
24 h. Afterwards, the white precipitate was filtered using a vacuum filter holder (Tianjin Jinteng
Experimental Equipment Co., Ltd., Tianjin, China), washed thoroughly with absolute ethanol, dried in
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vacuum oven (Gongyi Yuhua Instrument Co., Ltd., Gongyi, China) at 100 ◦C, and finally calcined in a
furnace (Beijing Zhongke Aobo Technology Co., Ltd., Beijing, China) at 550 ◦C for 3 h [37].

2.2.2. Preparation of CdS-TiO2 Heterostructure Composites

To load the CdS onto the TiO2 surface, a reported procedure in the literature was introduced [38].
0.16 g of TiO2 nanoparticles was put into 50 mL deionized water and stirred for 0.5 h. Next, 4 mL of
Cd(CH3COO)2 solution (0.1 M), 300 µL of analytical grade thioglycolic acid and 4 mL of Na2S solution
(0.1 M) were added into the suspension, respectively. After magnetic stirring for 1 h, 40 mL of the
suspension was added to a 50 mL Teflon-lined stainless steel autoclave (Shanghai Kesheng Instrument
Co., Ltd., Shanghai, China) and heated at 160 ◦C in an oven (Gongyi Yuhua Instrument Co., Ltd.,
Gongyi, China) for 14 h. The autoclave was then cooled at room temperature. Afterwards, the product
was centrifuged (Shanghai Anting Scientific Instrument Factory, Shanghai, Chian) and then washed
with deionized water. Subsequently, the yellow powder was dried at 60 ◦C in a vacuum oven for 10 h.
For comparison, a pure CdS nanoparticles was also synthesized following the same protocol described
above, without the addition of TiO2.

2.3. Characterization

2.3.1. Characterization of Structure and Morphology

The products were characterized by X-ray diffraction (XRD) in reflection mode (Cu Kα radiation)
on an UltimaIV X-ray diffractometer (Rigaku, Japan) at a scanning rate of 4◦/min in 2θ ranging from
15◦ to 85◦ (λ = 0.15418 nm).

The particle size and morphology was visualized using a field-emission scanning electronic
microscope (FESEM) (Gemini SEM 500, Carl Zeiss, Jena, Germany) with the energy dispersive X-ray
(EDX) (X-Max Extreme, Oxford Instruments, Oxford, UK) spectrum analysis capability, operating at
accelerating voltages of 20 kV.

Transmission electron microscopy and high-resolution transmission electron microscopy (HRTEM)
(FEI Tecnai G2 F30 TEM, Hillsboro, OR, USA) The electron accelerating voltage was 300 kV. A small
amount of the sample was first dispersed in alcohol by sonication. One drop of the suspension was
then dropped onto a thin, hole-filled carbon film. The girds were then dried under an infrared lamp
(Shanghai Kesheng Instrument Co., Ltd., Shanghai, China) for 10 min before TEM measurement.

The optical properties of CdS-TiO2 heterostructure composite as well as pure TiO2 and pure
CdS nanoparticles were investigated using an Ultraviolet-visible Lambda 365 diffuse reflectance
spectrophotometer (PerkinElmer, Waltham, Massachusetts, USA), which was equipped with a
Labsphere diffuse reflectance accessory using a standard white board as a reference. In addition,
the adsorption values of the tetracycline hydrochloride concentration were also measured by Lambda
365 UV-vis spectrometer.

2.3.2. Photocatalytic Degradation of Tetracycline Hydrochloride under Visible Light Irradiation

The photocatalytic degradation of tetracycline hydrochloride was carried out at room temperature
in an 80 mL self-designed quartz photochemical reactor containing 50 mL of aqueous solution
(50 mg/L). 50 mg of sample was dispersed in the solution and then the suspension was stirred
for 1 h to reach the adsorption-desorption equilibrium. All reactors were irradiated using a 500 W
Xenon lamp (Beijing NBeT Technology Co., Ltd., Beijing, China) with an ultraviolet filter (λ > 400 nm)
(Nbet) to cut off UV light [11,39]. 5 mL of the reacted solution was extracted from the quartz reactor
at a given irradiation time interval and then measured using a UV-vis spectrometer at the maximal
absorption wavelength of 356 nm to calculate the degradation efficiency (C/C0).
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3. Results and Discussion

3.1. Structure and Morphology of CdS-TiO2

3.1.1. Phase and Chemical Constitution of CdS-TiO2 Heterostructure Composite

Figure 2 presents the diffraction patterns of the pure TiO2 nanoparticles, the pure CdS
nanoparticles, and the CdS-TiO2 heterostructure composite with 50% (w/w) of CdS. For the TiO2

nanoparticles, the diffraction peaks at 25.3◦, 37.80◦, 48.0◦, 53.9◦, 55.1◦, 62.7◦, and 75.1◦ in the XRD
pattern can be attributed to the (101), (004), (200), (105), (211), (204), and (215) crystal planes of anatase
TiO2 (JCPDS no. 21-1272) [20], respectively. From the XRD patterns of CdS, it can be seen that the
diffraction peaks at 2θ values of 24.8◦, 26.5◦, 28.2◦, 43.7◦, 47.9◦, and 51.9◦ are in good agreement
with the (100), (002), (101), (110), (103), and (112) crystal planes of the hexagonal structure of the CdS
(JCPDS no. 75-1545), respectively [40]. All the XRD patterns of the CdS-TiO2 are consistent with both
the anatase TiO2 and greenockite CdS, indicating that the heterostructure composite is composed
of the two phases. We also calculated the average crystal sizes of greenockite CdS, anatase TiO2,
and CdS-TiO2 composite nanoparticles via the peak width of the (002) plane of greenockite CdS and
the (101) plane of anatase TiO2 by Scherrer’s formula (shown as follows). The results are shown in
Table 1 [41].

D =
Kλ

β cos θ

where K is a constant (shape factor, about 0.89), λ is the X-ray wavelength, β is the FWHM of the
diffraction line, and θ is the diffraction angle.

The results indicate that the average particle sizes of pure CdS and TiO2 are close and without
any change after forming the composite, which was also able to meet the preparation requirements of
CdS-TiO2 heterostructure.
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Table 1. Crystal size and band gap energy of the samples.

Sample Crystal Size of Nanoparticles
Calculated by the Peak Width (nm) Band Gap Energy (eV)

CdS 19 2.30
TiO2 11 3.24

CdS in CdS-TiO2 22 -
TiO2 in CdS-TiO2 12 -

3.1.2. Microstructure of CdS-TiO2

The morphology of the pure TiO2 nanoparticles, CdS nanoparticles, and CdS-TiO2 composites
have been analyzed by FESEM. Spherical morphology, as depicted in Figure 3a, shows uniformity with
a diameter of 15 nm. As shown in Figure 3b, the CdS nanoparticles show an oval-liked morphology
in the SEM image and their diameter are about 20 nm. Figure 3c shows that, although CdS were
deposited, the two components are similar in size, making it difficult to distinguish them via SEM
image. Figure 3d shows the distribution of the four elements (Ti, O, Cd, and S) in the composite.
Distribution overlapping indicates a uniform combination of CdS and TiO2. The signals of Cd and S
are greater than Ti and O, indicating that the TiO2 particles were decorated by CdS.
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composite (c) and energy dispersive X-ray (EDX) mapping results of the composite (d).

Transmission electron microscopy (TEM) was also applied to verify the fabrication of the CdS-TiO2

heterostructure. As seen in Figure 4a, the TiO2 nanoparticles are about 15nm in diameter, which agrees
well with the SEM observations. In Figure 4b, the CdS nanoparticles are olive-like in shape with
a diameter of about 20 nm. However, in Figure 4c, the CdS nanoparticles aggregates with TiO2.
The representative high resolution TEM (HRTEM) images revealed that the lattice spacing of the
CdS-TiO2 composite was 0.317 nm and 0.352 nm, which corresponded well to the (101) plane of
greenockite CdS and the (101) plane of anatase TiO2, respectively. It further confirmed the interfacial
junction between CdS and TiO2, in which CdS was closely attached to that of TiO2.
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3.1.3. Formation Mechanism of the TiO2 Nanoparticles and CdS-TiO2 Heterostructure Composite

The principle of the morphology evolution is summarized in Figure 5. A dissolution-recrystallization
process explains the reaction: Although the long rod-like precursor TiOSO4 dispersed in the ethanol
solution, there was still a small amount of water, which was released from the crystal water (TiOSO4·xH2O).
Subsequently, hydrolysis and alcoholysis were triggered under condition of high pressure and high
temperature in the autoclave [42]. It is assumed that some of O-Ti-O bonds in TiOSO4 were broken
during the solvothermal reaction and the TiO(OH)2 precipitated via hydrolysis reaction. Because limited
hydroxide radical was provided from the crystal water, the product could not develop but became a
nanoparticle in situ. As the reaction progressed, the three-dimensional framework of the raw material
decomposed and the long rod precursor TiOSO4 disappeared, replaced by blocks composed of numerous
nanoparticles. Anatase TiO2 was obtained after calcination at 550 ◦C for 3 h.

It is well known that hydroxyl radicals can be absorbed onto a TiO2 surface in aqueous solutions.
Moreover, cadmium ion can be drawn to a TiO2 surface in the presence of hydroxyl. When S2− was
introduced into the solution, CdS precipitated out and attached to the TiO2 particles. In the meantime,
a CdS-TiO2 heterostructure was generated, composed of two components of similar size.
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3.2. Properties of CdS-TiO2 Composite

3.2.1. Light Absorption Ability of the CdS-TiO2 Composite

The diffuse reflection UV-vis absorption spectra of CdS-TiO2 heterostructure composite is shown
in Figure 6, together with those of pure TiO2 and CdS as comparison. It is evident that pure TiO2

nanoparticles could only absorb up to 410 nm, which mostly belonged to the UV region because of
its wide energy band gap (3.2 eV) [43] and was unlikely to respond to visible light. In comparison,
the absorption features of CdS nanoparticles could reach 530 nm arising from the band absorption [38].
After sensitization with CdS, the absorption edge of CdS-TiO2 composite processed an obvious red
shift that broadened to about 550 nm, which showed strong absorption capability in the visible light
region. The existing difference in absorption edge wavelength for pure TiO2 and CdS-TiO2 clearly
indicates that the light absorption process of TiO2 was altered and that the photo-response of the
CdS-TiO2 as greatly improved through sensitization with the CdS nanoparticles [31,44]. The band gap
energy of pure CdS and pure TiO2 was estimated by the following formula [45–47].

Eg =
1240
λonset

where Eg is the band gap energy and λonset is the absorption onset determined by linear extrapolation
from the inflection point of the curve to the baseline [41,48,49]. The band gap energy results are also
shown in Table 1.
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3.2.2. Photocatalytic Properties of CdS-TiO2 Composite

The photocatalytic activities of the CdS-TiO2 heterostructure as well as the sole TiO2 and CdS
nanoparticles were evaluated through degradation of 50 mg/L tetracycline hydrochloride (TH) solution
under visible light irradiation. Although the degradation effect of TH was affected by many conditions,
such as pH, temperature, type of water matrix (ultrapure water, surface water, or groundwater), and so
on, in this study, we only examined the TH degradation in ultrapure water. Figure 7 shows the
concentration evolution of targeted raw material by the irradiation of visible light in the presence of
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different mass ratios of CdS-TiO2 samples (CdS: 0~100 wt %). Because TH is also sensitive to light,
for comparison, we performed a blank experiment without any photocatalyst. As expected, the TH
almost could not be degraded under the visible light. Additionally, the photocatalytic activity of pure
TiO2 nanoparticles was also very low (7.68%). The degradation efficiency of TH-self and pure TiO2

was almost negligible. Obviously, the CdS-TiO2 composite, which had a 50% of CdS, showed the
highest activity and the degradation of TH reached 87.06%. This phenomenon was explained by the
fact that a higher percentage of CdS could absorb more visible light and yield an efficient transfer
of excited electrons from the CdS nanoparticles to the conduction band of TiO2 nanoparticles [27].
However, when the mass percentage of CdS decreased to 25%, the degradation also decreased to
about 51.64%. This was a result of fewer electrons able to be generated by CdS under visible light
irradiation. However, the higher mass ratio of CdS (75%) also could not increase photocatalytic activity
(61.04%). This may have been a result of a smaller TiO2 proportion, which both diminished the
chance of photogenerated electrons moving from CdS to TiO2 and increased the charge recombination.
This explanation also can be applied to the pure CdS nanoparticles in which the degradation was
lower (42.26%).
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For further comparison as a reference material, the photocatalytic activity of the commercial
TiO2 (Degussa P25) (Merck, Darmstadt, Germany) was also examined. As shown in Figure 8,
the degradation efficiency could reach to 50% for P25 TiO2 after 8 h of photoreaction, which showed
higher photocatalytic activity than the pure TiO2 synthesized in this study. Although both TiO2 are
similar in morphology and structure, the commercial P25 TiO2 particles were composed of two kinds of
crystal shape: anatase and rutile TiO2, which is easy to utilize the visible light when compared with the
single-phase TiO2 [29]. However, the composite catalyst displayed much greater photocatalytic activity
after the CdS was introduced. The great improvement of photocatalytic activity of the CdS-TiO2

heterostructure composite can be understood as follow: because the properly aligned conduction
bands (CB) existed in the CdS-TiO2 composite, CdS nanoparticles could harness the visible light and
effectively transfer photogenerated electrons to the CB of TiO2 [20]. In so doing, TH could be degraded
much more easily than the P25 TiO2 degradation method.



Nanomaterials 2018, 8, 415 9 of 12
Nanomaterials 2018, 8, x FOR PEER REVIEW  9 of 12 

 

 

Figure 8. Degradation of tetracycline hydrochloride solution in the presence of CdS-TiO2 composites 
and P25 TiO2. 

3.2.3. Mechanism of the Photodegradation by CdS-TiO2 Composite 

The photodegradation mechanism of organic molecules in CdS-TiO2 heterostructure composite 
system has been discussed in previous studies [26,27,29,50]. As shown in Figure 9, the CdS-TiO2 
heterostructure composite featured the direct Z-scheme charge carrier transfer process [51]. Because 
of the lower band gap (about 2.3 eV), the carrier of CdS could be excited from the valence band (VB) 
to the conduction band (CB) by the visible light irradiation. When combined with the more positive 
CB of TiO2, the photogenerated electrons could be transferred from CB of CdS to that of TiO2, leaving 
high oxidation capability vacancies in the VB of CdS which could directly degrade TH. 
Simultaneously, these vacancies could be trapped on the surface of the photocatalyst, promoting the 
splitting of adsorbed water molecules or OH- forming hydroxyl radicals (·OH). These radicals have 
been considered as a type of strong oxidizing agents in which TH can also be oxidized during the 
photocatalytic reaction [52]. Similar-sized CdS nanoparticles were located on the surface of TiO2 
nanoparticles, enlarging the contact surface area. The photogenerated electrons in the CB of CdS 
could efficiently transfer to the CB of TiO2 at the interface, easily generating high energy holes and 
electrons, which allowed for good utilization of visible light [43]. 

 

Figure 8. Degradation of tetracycline hydrochloride solution in the presence of CdS-TiO2 composites
and P25 TiO2.

3.2.3. Mechanism of the Photodegradation by CdS-TiO2 Composite

The photodegradation mechanism of organic molecules in CdS-TiO2 heterostructure composite
system has been discussed in previous studies [26,27,29,50]. As shown in Figure 9, the CdS-TiO2

heterostructure composite featured the direct Z-scheme charge carrier transfer process [51]. Because of
the lower band gap (about 2.3 eV), the carrier of CdS could be excited from the valence band (VB) to
the conduction band (CB) by the visible light irradiation. When combined with the more positive CB
of TiO2, the photogenerated electrons could be transferred from CB of CdS to that of TiO2, leaving high
oxidation capability vacancies in the VB of CdS which could directly degrade TH. Simultaneously, these
vacancies could be trapped on the surface of the photocatalyst, promoting the splitting of adsorbed
water molecules or OH- forming hydroxyl radicals (·OH). These radicals have been considered as a
type of strong oxidizing agents in which TH can also be oxidized during the photocatalytic reaction [52].
Similar-sized CdS nanoparticles were located on the surface of TiO2 nanoparticles, enlarging the contact
surface area. The photogenerated electrons in the CB of CdS could efficiently transfer to the CB of TiO2

at the interface, easily generating high energy holes and electrons, which allowed for good utilization
of visible light [43].
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4. Conclusions

In summary, a CdS-TiO2 heterostructure composite was produced through a simple hydrothermal
method by using TiOSO4 as a titanium precursor. In this composite, the CdS nanoparticles were
uniformly loaded onto the surface of an anatase TiO2 nanoparticles. Both kinds of particles were similar
in size. In comparison with the as-prepared pure TiO2 and Degussa P25, the CdS-TiO2 composite
exhibited higher photocatalytic activity for tetracycline hydrochloride degradation, which reached
87.06% under visible light irradiation. The enhanced activity for the CdS-TiO2 composite was attributed
to the more effective transfer of the photogenerated electrons due to the larger contact area between
the two semiconductors.
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