## Effect of Source/Drain Electrodes on Electrical Properties of Silicon-Tin-Oxide Thin-Film Transistors

Xianzhe Liu<sup>1</sup>, Honglong Ning<sup>1</sup>, Weifeng Chen<sup>1</sup>, Zhiqiang Fang<sup>2</sup>, Rihui Yao<sup>1,\*</sup>, Xiaofeng Wang<sup>3</sup>, Yuxi Deng<sup>1</sup>, Weijian Yuan<sup>1</sup>, Weijing Wu<sup>1,\*</sup>, Junbiao Peng<sup>1</sup>

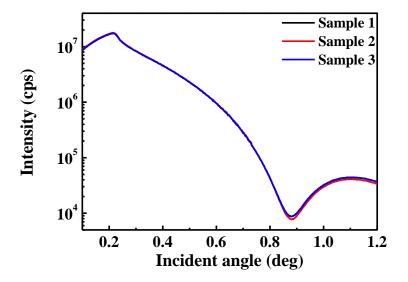



Figure S1. X-ray reflectivity (XRR) curves for a-STO films.

Table S1. The properties (density, thickness and roughness) of a-STO films.

| Sample | Density (g/cm <sup>3</sup> ) | Thickness (nm) | Roughness (nm) |
|--------|------------------------------|----------------|----------------|
| 1      | 6.21                         | 5.062          | 0.669          |
| 2      | 6.198                        | 5.06           | 0.623          |
| 3      | 6.138                        | 5.043          | 0.671          |

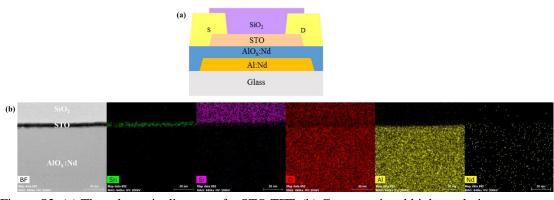



Figure S2. (a) The schematic diagram of a-STO TFT. (b) Cross-sectional high resolution transmission electron microscope (HRTEM) image and elements distribution detected by Energy-dispersive X-ray spectroscopy (EDS) mapping scan for a-STO TFT.

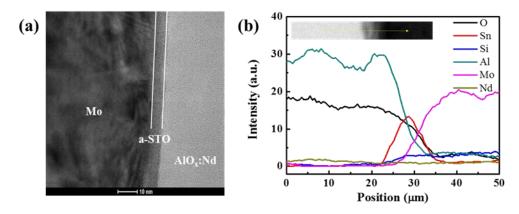



Figure S3. (a) The cross-sectional transmission electron microscope (TEM) image and (b) elements distribution detected by Energy-dispersive X-ray spectroscopy (EDS) line scan for a-STO TFT.

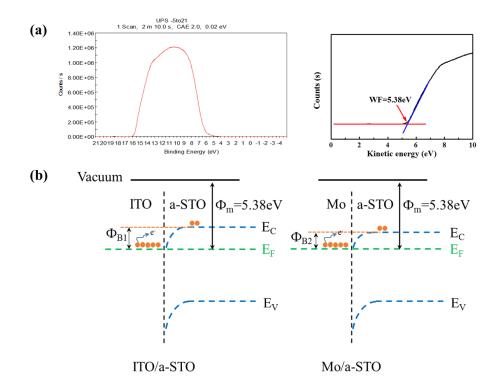
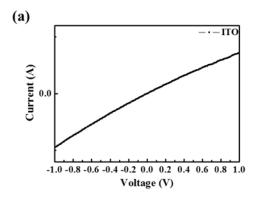




Figure S4. (a) The work function of a-STO film (200 nm) measured by X-ray Photoelectron Spectroscopy. (b) Theoretically, the energy band diagram of a-STO film contacted with different electrodes: ITO and Mo. The work functions of ITO, Mo and a-STO are 4.5 eV, 4.6 eV and 5.38 eV, respectively.



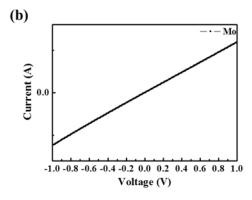



Figure S5. I-V curves of a-STO film contacted with different electrodes: (a) ITO and (b) Mo. The linear I-V curve of TFT with ITO or Mo contact indicated that Ohmic contact was formed at the electrode/a-STO interface.

## The importance of DOS in AOS device:

In AOS devices, the subgap density of states (DOS) is an important parameter which plays a major part in controlling the mobility, the operation voltage and subthreshold swing of TFTs. The TFT mobilities are deteriorated by the subgap density of states (DOS), as roughly expressed by

$$\mu_{FE} = \mu \frac{N_{GS} - N_T}{N_{GS}}$$

where  $N_T$  is the total DOS of the unoccupied subgap DOS, and  $N_{GS} = Cg(V_{GS} - V_{th})$  is the electron density induced by  $V_{GS}$ . The subgap DOS also determines the operation voltage of the TFT; the operation voltage is limited by the  $V_{GS}$  range required to switch the TFT from the off state to the on state, which is expressed by the S value defined by

$$S = \frac{dV_{GS}}{dlogI_{DS}} = ln10\frac{k_BT}{e}(1 + \frac{eD_{sg}}{C_a})$$

 $D_{sg}$  is the subgap DOS at the Fermi level ( $E_F$ ). These results indicate that reduction of the subgap DOS is the most important issue for realizing high-performance TFTs.

## The extracted procedure of parameters from Equation 1 and Equation 2:

Equation 1:

$$I_{DS} = \frac{W}{L} \mu_{FE} C_i \left( V_{GS} - V_{th} - \frac{1}{2} V_{DS} \right) V_{DS}$$

$$I_{DS} = \frac{W}{L} \mu_{FE} C_i \left[ (V_{GS} - V_{th}) V_{DS} - \frac{1}{2} V_{DS}^2 \right]$$

The  $\frac{1}{2}V_{DS}^2$  can be ignored in consideration of the very small value of  $V_{DS}$  (~0.1V).

$$I_{DS} = \frac{W}{L} \mu_{FE} C_i (V_{GS} - V_{th}) V_{DS}$$

 $V_{th}$  can be determined by using linear extrapolation of the tested transfer curve ( $I_{DS}$ - $V_{GS}$ ). The slope can also be obtained from linear extrapolation.

Slope = 
$$\mu_{FE} \frac{W}{L} C_i V_{DS}$$

$$\mu_{FE} = \frac{L \cdot \text{Slope}}{W C_i V_{DS}}$$

Equation 2:

$$I_{DS} = \frac{W\mu_{sat}C_i}{2L}(V_{GS} - V_{th})^2$$

$$\sqrt{I_{DS}} = \sqrt{\frac{W\mu_{sat}C_i}{2L}}(V_{GS} - V_{th})$$

 $V_{th}$  can be determined by using linear extrapolation of the tested transfer curve ( $\sqrt{I_{DS}}$ - $V_{GS}$ ). The slope can also be obtained from linear extrapolation.

Slope = 
$$\sqrt{\frac{W\mu_{sat}C_i}{2L}}$$

$$\mu_{sat} = \frac{2L \cdot \text{Slope}^2}{WC_i}$$

The procedure for the proposed extraction method is described as follows.

$$\psi_{s} = \int_{V_{fb}}^{V_{gs}} \left( 1 - \frac{c_{g}(v'_{gs})}{c_{ox}} \right) dV'_{gs} \tag{1}$$

$$\rho(\psi_s) = -\frac{c_g(v_{gs}) \int_{V_{fb}}^{V_{gs}} c_g(v_{gs}') dv_{gs}'}{\varepsilon_s \left(1 - \frac{c_g(v_{gs})}{c_{ox}}\right)}$$
(2)

$$N_t(E_{F0} + q\psi_s) = -\frac{1}{q^2} \frac{\rho(\psi_s + \Delta\psi_s) - \rho(\psi_s)}{\Delta\psi_s} - \frac{n_0}{qV_t} exp\left(\frac{\psi_s}{V_t}\right)$$
(3)

Firstly,  $\Psi_s$  in terms of  $V_{gs}$  is calculated from the  $C_g$ - $V_{gs}$  characteristics of TFTs by (1). Secondly, the surface charge concentration  $\rho(\Psi_s)$  can be obtained from the  $C_g$ - $V_{gs}$  characteristics of TFTs by (2). Finally, the density of states  $N_t(E)$  with respect to some energy level ( $E = E_{F0} + q\Psi_s$ ) can be extracted by (3). As seen above, the proposed extraction method of DOS has the advantages of analyticity and simplicity.