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Abstract: Despite the combination of molecular recognition and local electric field enhancement
endowing cucurbit[n]uril-capped metallic nanoparticles, indicating great potential in a variety of
areas, prior work has paid little attention to carbonizing cucurbit[n]uril on the surface of gold
nanoparticles, which may propose new carbon-gold hybrid materials with interesting applications.
In this work, we developed a simple and cost-effective method to prepare carbon-gold hybrids
by carbonizing cucurbit[n]uril modified gold nanoparticles. The as-prepared cucurbit[n]uril
based carbon and carbon-gold hybrid materials have shown to possess peroxidase-like activity.
All cucurbit[n]uril based nanomaterials exhibited high catalytic activity over a pH range 2–6 and
more tolerant to high temperature (up to 60 ◦C) when compared to natural horseradish peroxidase.

Keywords: cucurbit[n]uril; gold nanoparticles; carbon-gold hybrid; peroxidase-like activity

1. Introduction

The cucurbit[n]uril (CB[n]) family, which bears a rigid hydrophobic cavity and two identical
carbonyl fringed portals, is one of the most important macrocyclic containers in host-guest chemistry.
The carbonyl oxygen atoms of the cucurbit[n]uril can coordinate directly to a variety of metal ions and
lead to complicated nanoscale frameworks and architectures [1]. Since Li and colleagues unraveled the
direct interactions between surface of gold nanoparticles and the electron-rich carbonyl rims of CB[n]
for the first time [2], CB[n] has been commonly used in capping gold and other metallic nanoparticles
with applications, such as in catalysis, drug delivery, electrochemical analysis and surface-enhanced
Raman spectroscopy (SERS) [3,4]. In spite of this, there are very few reports of carbonization of CB[n]
on the surface of gold nanoparticles, which may be expected to bring new carbon-gold hybrid materials
with interesting applications. Previous studies have shown that carbon-gold nanocomposites have
excellent biocompatibility, electric conductivity, and physical and chemical stability [5–10].

The long-term goal of our group is to construct carbon, metal and carbon-metal hybrid
nanomaterials for emerging catalytic, sensing and biological applications [11–17]. In our previous
work, we developed carbon nanomaterials decorated with metal nanoparticles by ion implantation
and chemical deposition [18–20], in which the metal particles adhered poorly to the carbon material.
Recently, we developed a sonicationand solvothermal method to prepare carbon nanomaterials [21–23]
that can degrade hydrogen peroxide to produce hydroxyl radicals, and thus possess intrinsic
peroxidase-like activity [22]. Herein, we demonstrate a simple and cost-effective method to prepare
carbon-gold hybrids by carbonizing cucurbit[n]uril modified gold nanoparticles, as illustrated in
Scheme 1. The prepared materials exhibited high catalytic activity over a pH range 2~6 and were more
tolerant to high temperature when compared to natural horseradish peroxidase (HRP).
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Scheme 1. Schematic illustration of preparation of cucurbit[n]uril based carbon-gold and carbon 
nanomaterials with peroxidase-like activity. 

2. Materials and Methods 

2.1. Chemicals 

Sodium hydroxide, hydrogen peroxide, disodium hydrogen phosphate dodecahydrate, sodium 
chloride and 3,3′,5,5′-tetramethylbenzidine (TMB) were purchased from Sinopharm Chemical 
Reagent Co., Ltd. (Shanghai, China). Horseradish peroxidase was purchased from Hubei Xinxin Belle 
Biotechnology Co., Ltd. (Wuhan, China). Potassium tetrachloroaurate (III) was purchased from Sahn 
Chemical Technology Co., Ltd. (Shanghai, China). Cucurbit[6]uril and cucurbit[7]uril were 
synthesized by our group [14,17]. 

2.2. Cucurbit[n]uril Directed Synthesis of Gold Nanoparticles (AuNPs) 

The aqueous solution of CB[6] (5 mmol, 25 mL) and CB[7] (5 mmol, 25 mL) was prepared with 
the assistance of sodium chloride (29 mg) because CB[6] partially dissolved in double distilled water. 
After that, one equivalent amount of aqueous KAuCl4 (5 mmol, 25 mL) was mixed with CB[6] or 
CB[7] solution at room temperature. A yellow precipitate was immediately obtained, then an aqueous 
solution of NaOH (40 mmol, 50 mL) was added. The yellow precipitate disappeared, and a clear 
solution was obtained; then, a wine-red colored solution formed after 48 h, indicating the formation 
of the AuNPs. 

2.3. Preparation of Cucurbit[n]uril Based Carbon-Gold and Carbon Nanomaterials 

Initially, the resulting wine red AuNPs was washed three times with double distilled water by 
means of centrifugation. After that, AuNPs solution was sealed in Teflon-lined stainless-steel 
autoclave (100 mL) and reacted at 180 °C for 24 h by using Vacuum oven DZF-6020 (Shanghai 
Jinghong, Shanghai, China). After the autoclave was cooled down to the room temperature, the pre-
carbonized materials were collected by means of centrifugation. The obtained khaki powder was 
dried in vacuum at 40 °C, then carbonized in quartz crucible up to 700 °C under a nitrogen 
atmosphere at a heating rate of 5 °C/min, and then held at that temperature for 1 h by using a vacuum 
tube furnace, OTF-1200X. Carbon nanomaterials were directly prepared from CB[6] and CB[7] in a 
quartz crucible by heating up to 700 °C under a nitrogen atmosphere at a rate of 5 °C/min, and then 
held at that temperature for 1 h. 

2.4. Materials Characterization 

The UV-vis absorption spectra were recorded on Shimadzu UV-vis-NIR spectrophotometer 
(Shimadzu, Tokyo, Japan). Transmission electron microscopy (TEM) was performed by using JEM-
2100UHR STEM (JEOL, Tokyo, Japan). Energy-dispersive X-ray spectroscopy (EDS) measurements 
were performed with a spectrometer attached to PHILIPS XL30 TMP field-emission scanning electron 
microscopy (SEM) system (Philips, Hillsboro, OR, USA). The X-ray powder diffraction (XRD) pattern 

Scheme 1. Schematic illustration of preparation of cucurbit[n]uril based carbon-gold and carbon
nanomaterials with peroxidase-like activity.

2. Materials and Methods

2.1. Chemicals

Sodium hydroxide, hydrogen peroxide, disodium hydrogen phosphate dodecahydrate, sodium
chloride and 3,3′,5,5′-tetramethylbenzidine (TMB) were purchased from Sinopharm Chemical Reagent
Co., Ltd. (Shanghai, China). Horseradish peroxidase was purchased from Hubei Xinxin Belle
Biotechnology Co., Ltd. (Wuhan, China). Potassium tetrachloroaurate (III) was purchased from
Sahn Chemical Technology Co., Ltd. (Shanghai, China). Cucurbit[6]uril and cucurbit[7]uril were
synthesized by our group [14,17].

2.2. Cucurbit[n]uril Directed Synthesis of Gold Nanoparticles (AuNPs)

The aqueous solution of CB[6] (5 mmol, 25 mL) and CB[7] (5 mmol, 25 mL) was prepared with
the assistance of sodium chloride (29 mg) because CB[6] partially dissolved in double distilled water.
After that, one equivalent amount of aqueous KAuCl4 (5 mmol, 25 mL) was mixed with CB[6] or
CB[7] solution at room temperature. A yellow precipitate was immediately obtained, then an aqueous
solution of NaOH (40 mmol, 50 mL) was added. The yellow precipitate disappeared, and a clear
solution was obtained; then, a wine-red colored solution formed after 48 h, indicating the formation of
the AuNPs.

2.3. Preparation of Cucurbit[n]uril Based Carbon-Gold and Carbon Nanomaterials

Initially, the resulting wine red AuNPs was washed three times with double distilled water by
means of centrifugation. After that, AuNPs solution was sealed in Teflon-lined stainless-steel autoclave
(100 mL) and reacted at 180 ◦C for 24 h by using Vacuum oven DZF-6020 (Shanghai Jinghong, Shanghai,
China). After the autoclave was cooled down to the room temperature, the pre-carbonized materials
were collected by means of centrifugation. The obtained khaki powder was dried in vacuum at 40 ◦C,
then carbonized in quartz crucible up to 700 ◦C under a nitrogen atmosphere at a heating rate of
5 ◦C/min, and then held at that temperature for 1 h by using a vacuum tube furnace, OTF-1200X.
Carbon nanomaterials were directly prepared from CB[6] and CB[7] in a quartz crucible by heating up
to 700 ◦C under a nitrogen atmosphere at a rate of 5 ◦C/min, and then held at that temperature for 1 h.

2.4. Materials Characterization

The UV-vis absorption spectra were recorded on Shimadzu UV-vis-NIR spectrophotometer (Shimadzu,
Tokyo, Japan). Transmission electron microscopy (TEM) was performed by using JEM-2100UHR STEM
(JEOL, Tokyo, Japan). Energy-dispersive X-ray spectroscopy (EDS) measurements were performed with a
spectrometer attached to PHILIPS XL30 TMP field-emission scanning electron microscopy (SEM) system



Nanomaterials 2018, 8, 273 3 of 11

(Philips, Hillsboro, OR, USA). The X-ray powder diffraction (XRD) pattern was tested on a X’Pert PRO
MPD diffractometer (Panalytical B.V., Amsterdam, Holland) with nickel-filtered Cu Kαradiation. A thermal
gravimetric analyzer (TGA) STA449 (Nai Chi Scientific Instruments, Shanghai, China)was used for the
investigation of the thermal properties of the samples.

2.5. Peroxidase-Like Activity

To investigate the peroxidase-like activity of carbon-gold and carbon nanomaterials, catalytic
oxidation of the colorimetric substrate TMB in the presence of H2O2 was performed. In a typical
experiment [22], the mixture of TMB (8 mM, 100 µL), carbon-gold (40 µL) or carbon nanomaterials
(1 mg/mL), phosphate buffer (25 mM, 810 µL, pH = 4), together with H2O2 (1 M, 50 µL) are incubated
at 35 ◦C for standard curve measurement. Under the above-mentioned condition, the catalytic reaction
was incubated in the buffer solution under different pH (1.0–12.0) to investigate the pH effect on the
tested reaction. Similarly, the reaction was incubated in the buffer solution under different temperature
from 25 ◦C to 60 ◦C to examine the effect of temperature. HRP was investigated under the same
conditions as the control.

Under optimum conditions, the steady-state kinetic parameters of carbon-gold (CCB[n]/AuNPs)
and carbon nanomaterials (CCB[n]) as catalysts were determined by using H2O2 and TMB as substrates.
In the presence of H2O2 and TMB, the reaction was carried out at 35 ◦C in a 1 mL of a tube containing
prepared nanomaterials or HRP in phosphate buffer solution (25 mM, pH = 4). The assays were
carried out by varying concentration of TMB at a fixed concentration of H2O2 or varying concentration
of H2O2 at a fixed concentration of TMB. The reaction kinetics measurements were performed by
recording the absorbance reading at 652nm in the time scan mode.

3. Results and Discussion

3.1. Characterization of Prepared Nanomaterials

As illustrated in Scheme 1, KAuCl4 in CB[n] solution produced CB[n] capped AuNPs under a specific
set of conditions [24–27]. The CB[n] plays the role of both reducing and protecting agents. The particles
obtained were spherical in shape and had good dispensability as shown in Figure 1. UV-vis spectroscopy
of AuNPs are shown in Figure 1a, the characteristic surface plasmon resonance band of these two kinds of
AuNPs centered at 547 nm and 540 nm, respectively. The size of AuNPs was investigated by transmission
electron microscopy (TEM), as shown in Figure 1b,c, and the mean diameter of the CB[n] capped AuNPs,
CB[6]/AuNPs and CB[7]/AuNPs were 8.0± 1.5 nm and 10.0± 1.1 nm.
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In order to confirm the morphology of the annealed CB[6]/AuNPs and CB[7]/AuNPs hybrid
materials (CCB[6]/AuNPs and CCB[7]/AuNPs), scanning electron microscopy (SEM) and transmission electron
microscopy (TEM) were applied to study the prepared materials. The SEM images in Figure 2a,e show
that these hybrid materials have three-dimensional porous structures. EDS spectroscopy was further used
to confirm the hybrid nanomaterials. As shown in Figure 2b,f, EDS only detected gold and carbon in the
composites, suggesting that these hybrids are composed of gold and carbon elements. Moreover, X-ray
diffraction patterns were utilized to detect the crystal structures of two hybrids. The diffraction peaks
observed from the blue line of Figure 2d,h at 38.2◦, 44.4◦, 64.7◦ 77.7◦ and 81.8◦ could be ascribed to the (111),
(200), (220), (311) and (222) planes of the Au crystals, and a broad peak at 20◦–30◦ related to the amorphous
carbon of cucurbit[n]uril [28,29], which further confirms that the hybrid materials are composites of gold
and carbon. In addition, the black strip of Au is embedded in the carbon film irregularly, as evidenced by
the TEM images in Figure 2c,g.
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Figure 2. (a) Secondary electron SEM image of CCB[6]/AuNPs; (b) EDS pattern of CCB[6]/AuNPs; (c) TEM
image of CCB[6]/AuNPs; (d) XRD pattern of CB[6] and corresponding materials; (e) Secondary electron
SEM image of CCB[7]/AuNPs; (f) EDS pattern of CCB[7]/AuNPs; (g) TEM image of CCB[7]/AuNPs; (h) XRD
pattern of CB[7] and corresponding materials.
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Thermal gravimetric analysis (TGA) was used to investigate the weight loss of CB[6] and CB[7].
As shown in Figure 3, there are two steps to weight loss. The slight weight loss from the first stage could
be attributed to the release of physically absorbed water, and the other loss is from the pyrogenation of
cucurbit[n]urils [17]. The annealed cucurbit[7]uril (CCB[7]) is multilayer stacking of porous structures
(the pore size is around 0.56 ± 0.13 µm), while the annealed cucurbit[6]uril (CCB[6]) is the layer by
layer stacking structure, with no obvious pores detected. The thickness of CCB[7] sheet (1.47 ± 0.29 µm)
is thicker than that of CCB[6] (0.97 ± 0.32 µm).

Nanomaterials 2018, 8, x FOR PEER REVIEW  5 of 11 

 

Thermal gravimetric analysis (TGA) was used to investigate the weight loss of CB[6] and CB[7]. 
As shown in Figure 3, there are two steps to weight loss. The slight weight loss from the first stage 
could be attributed to the release of physically absorbed water, and the other loss is from the 
pyrogenation of cucurbit[n]urils [17]. The annealed cucurbit[7]uril (CCB[7]) is multilayer stacking of 
porous structures (the pore size is around 0.56 ± 0.13 µm), while the annealed cucurbit[6]uril (CCB[6]) 
is the layer by layer stacking structure, with no obvious pores detected. The thickness of CCB[7] sheet 
(1.47 ± 0.29 µm) is thicker than that of CCB[6] (0.97 ± 0.32 µm). 

 
Figure 3. TGA curves of (a) CB[6] and (d) CB[7]; Secondary electron SEM images of CCB[6]: (b,c); 
Secondary electron SEM images of CCB[7]: (e,f). 

3.2. Peroxidase-Like Activity 

The catalytic performance of as-prepared carbon-gold and carbon nanomaterials were tested by 
using the peroxidase substrate TMB. Upon the addition of H2O2, the catalytic reaction can be 
monitored by detecting TMB absorbance change at 652 nm [22,30,31]. As shown in Figure 4, no 
obvious absorbance peak at 652 nm could be detected in the mixed solution of TMB and prepared 
materials of TMB and H2O2. After the addition of H2O2, the absorption peak at 652 nm was 
significantly enhanced in the presence of prepared nanomaterials over the same period. These results 
clearly demonstrated that prepared hybrids and carbon nanomaterials in this work possessed 
intrinsic peroxidase-like activity. As shown in Figure S1, with the increasing concentration of TMB, 
the absorbance at 652 nm changed quickly, suggesting that more TMB was oxidized. Furthermore, 
TMB can be detected by the prepared materials as low as 1 × 10−4 mol/L, which is similar to HRP [32–
35].  

Similar to other peroxidase mimics as well as the natural peroxidase HRP, the catalytic activity 
of hybrids and carbon nanomaterials is also dependent on pH and temperature [32,33]. It is well 
known that pH is an important parameter for a catalytic reaction. The pH dependent experiments 
were performed in the buffer solution with different pH values range from 1.0 to 12.0. Similar to the 
natural peroxidase HRP, the optimal pH is 4. In addition, hybrids and carbon nanomaterials are much 
more stable over a relatively wide pH range. As shown in Figure 5a–d, when the pH of the buffer 
solution is 5, the peroxidase-like activity of hybrids and carbon nanomaterials remained 80%, while 
the HRP almost drifted to inactive performance. Moreover, the influence of temperature on the TMB 
oxidation reaction catalyzed by the as-prepared nanomaterials and HRP were investigated by 

Figure 3. TGA curves of (a) CB[6] and (d) CB[7]; Secondary electron SEM images of CCB[6]: (b,c);
Secondary electron SEM images of CCB[7]: (e,f).

3.2. Peroxidase-Like Activity

The catalytic performance of as-prepared carbon-gold and carbon nanomaterials were tested
by using the peroxidase substrate TMB. Upon the addition of H2O2, the catalytic reaction can be
monitored by detecting TMB absorbance change at 652 nm [22,30,31]. As shown in Figure 4, no obvious
absorbance peak at 652 nm could be detected in the mixed solution of TMB and prepared materials of
TMB and H2O2. After the addition of H2O2, the absorption peak at 652 nm was significantly enhanced
in the presence of prepared nanomaterials over the same period. These results clearly demonstrated
that prepared hybrids and carbon nanomaterials in this work possessed intrinsic peroxidase-like
activity. As shown in Figure S1, with the increasing concentration of TMB, the absorbance at 652 nm
changed quickly, suggesting that more TMB was oxidized. Furthermore, TMB can be detected by the
prepared materials as low as 1 × 10−4 mol/L, which is similar to HRP [32–35].

Similar to other peroxidase mimics as well as the natural peroxidase HRP, the catalytic activity of
hybrids and carbon nanomaterials is also dependent on pH and temperature [32,33]. It is well known that
pH is an important parameter for a catalytic reaction. The pH dependent experiments were performed in
the buffer solution with different pH values range from 1.0 to 12.0. Similar to the natural peroxidase HRP,
the optimal pH is 4. In addition, hybrids and carbon nanomaterials are much more stable over a relatively
wide pH range. As shown in Figure 5a–d, when the pH of the buffer solution is 5, the peroxidase-like
activity of hybrids and carbon nanomaterials remained 80%, while the HRP almost drifted to inactive
performance. Moreover, the influence of temperature on the TMB oxidation reaction catalyzed by the
as-prepared nanomaterials and HRP were investigated by varying the reaction temperature from 25 ◦C
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to 60 ◦C, as illustrated in Figure 5e,f. Due to the sensitivity of HRP to temperature, the natural enzyme
easily becomes denatured, while the catalytic activity of hybrids and carbon nanomaterials increased
gradually with increasing experimental temperatures. However, the catalytic activity of hybrids and CCB[6]
dramatically decreased at a temperature higher than 55 ◦C, except for CCB[7], which continuously increased
with the higher temperature. This might be attributed to the honeycomb-like porous structure and larger
pore volume of CCB[7] as shown in Figure 3. Although it has been reported that Fe3O4@C nanoparticles [33]
and CeO2 nanoparticles [34] exhibited temperature-dependent catalytic activity, the exact mechanism
underlying such activity is still unclear. The evolution of oxidation of TMB under H2O2 as a function of
pH and temperature was conducted. As shown in Figure S2, H2O2 could be more efficient in oxidizing
TMB at higher temperatures under acidic conditions. Increasing the temperature could accelerate the
decomposition of H2O2 to produce oxygen and benefit the oxidation of TMB.
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For further analyzing the catalytic mechanism of hybrids and carbon nanomaterials, steady-state
kinetics with TMB and H2O2 as substrates were investigated. A series of experiments were
performed by varying the concentration of one substrate while fixing another as constant.
Typical Michaelis-Menten curves (Figure 6) were received in a certain concentration of H2O2 or
TMB. Maximum initial velocity (Vmax) and Michaelis-Menten constant (Km) were obtained using
Lineweaver-Burk plot and were presented in Table 1. Typically, the lower Km represents a higher
enzyme-like affinity between the catalyst and the substrate [32,35]. The Km value of hybrids with TMB
was lower than that of carbon nanomaterials and higher than that of CB[n] capped AuNPs (Figure
S3). This suggests higher binding affinity of hybrids to TMB than that of carbon nanomaterials, and
lower binding affinity of hybrids to TMB than that of CB[n] capped AuNPs. Similarly, the Km value of
hybrids with H2O2 is slightly lower than that of carbon nanomaterials and higher than that of CB[n]
capped AuNPs. The results can be attributed to the synergistic effect of gold and carbon, so hybrids
with gold could absorb TMB and H2O2 more efficiently than carbon materials. However, the Vmax of
carbon nanomaterials is higher than that of hybrids. This is possible as the dispersion of hybrids in
water is worse than that of carbon nanomaterials.

Similar to previous studies [36,37], the unsupported CB[n] capped AuNPs could catalyze the
oxidation of TMB in the presence of H2O2. Typically, AuNPs could absorb H2O2 [38] and CB[n] on
the gold tend to attract amino groups of TMB electrostatically [3,39], which likely to result in stronger
affinity to reaction substrates (Table 1). After carbonization, the unique porous carbon architecture was
produced, and the gold was embedded in the porous carbon aggregates, which possibly could benefit
electron transfer [40]. Thus far, the hybrids in our case exhibited comparable peroxidase-like activity
with Fe3O4, Pt, Pd and CuS nanoparticles, and much better binding affinity towards H2O2 (Table 1).
There is still great potential to improve their ability as nano-enzymes by tuning compositions.

Table 1. Michaelis-Menten constant (Km) and maximum reaction rate (Vmax) of different nanomaterials
in this work and HRP.

Catalyst Substrate Km (mM) Vmax (10−9 M/s)

CCB[6]
TMB 2.4 ± 0.1 98.2 ± 3.8
H2O2 2.2 ± 0.2 16.4 ± 1.8

CCB[7]
TMB 2.5 ± 0.1 34.7 ± 2.9
H2O2 1.4 ± 0.1 5.2 ± 0.8

CB[6]/AuNPs
TMB 0.098 ± 0.008 10.1 ± 0.8
H2O2 0.2 ± 0.07 3.0 ± 0.2

CB[7]/AuNPs
TMB 0.038 ± 0.003 10.2 ± 0.2
H2O2 0.097 ± 0.02 3.9 ± 0.1

CCB[6]/AuNPs
TMB 1.9 ± 0.2 11.4 ± 1.2
H2O2 1.3 ± 0.2 10.8 ± 1.5

CCB[7]/AuNPs
TMB 0.63 ± 0.12 6.4 ± 1.0
H2O2 0.74 ± 0.08 1.7 ± 1.1

HRP
TMB 0.81 ± 0.11 47.6 ± 2.3
H2O2 9.8 ± 0.04 87.6 ± 2.0

Fe3O4 magnetic nanoparticles [30] TMB 0.098 34.4
H2O2 154 97.8

Glutathione-capped Pd nanoparticles [41] TMB 0.068 315
H2O2 156 408

Glutathione-capped Pt nanoparticles [42] TMB 0.079 328
H2O2 73.6 302

Montmorillonite-supported CuS nanoparticles [43] TMB 0.021 2.8
H2O2 2.3 0.97
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4. Conclusions

In the present work, we prepared well-dispersed AuNPs using cucurbit[n]uril (n = 6, 7) as
reducing and protecting agents according to a facile and eco-friendly one-step synthesis. CB[n] based
carbon-gold hybrids and carbon nanomaterials were then successfully prepared by carbonization,
which is a simple, cost-effective, quick and practical approach. All CB[n]based nanomaterials possess
intrinsic peroxidase-like activity, and the hybrids could absorb substrates more efficiently with the
incorporated gold. This method guided constructing novel and enhanced carbon-gold multifunctional
nanomaterials. Once guest molecules containing nitrogen, oxygen and other heteroatoms are
included in the cavity of CB[n] on metallic nanoparticles, heteroatom-doped carbon-metal hybrids can
be prepared.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/8/5/273/s1,
Figure S1: The time-dependent absorbance changes at 652 nm under different TMB concentration; Figure S2:
(a) Temperature and (b) pH dependence for TMB and H2O2 system in the absence of nanomaterials; Figure S3:

http://www.mdpi.com/2079-4991/8/5/273/s1
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UV-vis spectra of different TMB system with (a) CB[6]/AuNPs and (b) CB[7]/AuNPs, and steady-state kinetic
curves of (c) CB[6]/AuNPs and (d) CB[7]/AuNPs.
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