Luminescence Mechanism of Carbon Dots by Tailoring Functional 1 Groups for Sensing Fe³⁺ Ions 2

Jingjing Yu^a, Chang Liu^a, Kang Yuan^a, Zunming Lu^a, Yahui Cheng^b, Lanlan Li^a, 3 Xinghua Zhang^{a,*}, Peng Jin^{a,*}, Fanbin Meng^a, Hui Liu^{c,*} 4

- 5 ^aSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin, China.
- 6 7 ^bDepartment of Electronics and Key Laboratory of Photo-Electronic Thin Film Devices and Technology of Tianjin, Nankai
- University, Tianjin, China.
- 8 ^cTianjin University, Sch Mat Sci&Engn, Inst New Energy Mat, Key Lab Adv Ceram & Machining Technol, MinistEduc, Tian-
- 9 jin, China.

^{*}Corresponding authors. Tel.: +86 022 60204805, Fax.: +86 022 60202660, Email: zhangxinghua@hebut.edu.cn; china.peng.jin@gmail.com; hui liu@tju.edu.cn.

1 Supporting Information

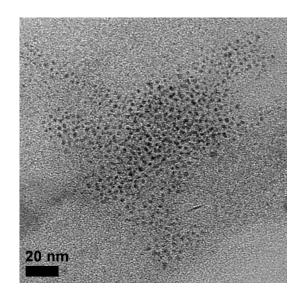


Figure S1. TEM image of CDs-1.

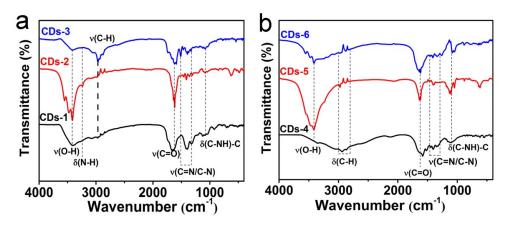
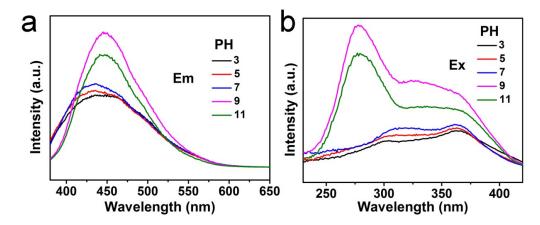
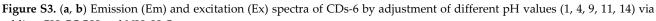
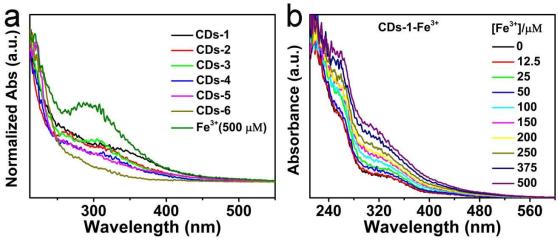
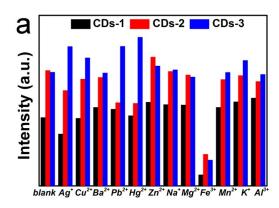





Figure S2. FT-IR spectra of (a) CDs-1, CDs-2, and CDs-3; and (b) CDs-4, CDs-5, and CDs-6.




8 adding CH₃COOH and NH₃·H₂O.

Figure S4. (a) Absorption spectra of CDs-1, CDs-2, CDs-3, CDs-4, CDs-5, CDs-6, and Fe³⁺ ion solution. (b) Absorption spectra of CDs-1 in the presence of different concentrations of Fe³⁺ ions.

Figure S5. Comparison of fluorescence intensities of CDs under 365 nm excitation (including CDs-*x*, x = 1, 2, 3, 4, 5, 6) in the presence of different metal ions (the concentration of metal ions is 500 μ M; the concentration of CDs-1 is 1 mg/mL).

)