
nanomaterials

Article

Fabrication and Characterization of Aligned Flexible
Lead-Free Piezoelectric Nanofibers for Wearable
Device Applications

Sang Hyun Ji and Ji Sun Yun *

Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology, Jinju 52851,
Korea; sanghyun_ji@kiect.re.kr
* Correspondence: susubin@kicet.re.kr; Tel.: +82-55-792-2675; Fax: 82-55-792-2651

Received: 23 February 2018; Accepted: 26 March 2018; Published: 29 March 2018
����������
�������

Abstract: Flexible lead-free piezoelectric nanofibers, based on BNT-ST (0.78Bi0.5Na0.5TiO3-0.22SrTiO3)
ceramic and poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE) copolymers, were fabricated
by an electrospinning method and the effects of the degree of alignment in the nanofibers on the
piezoelectric characteristics were investigated. The microstructure of the lead-free piezoelectric
nanofibers was observed by field emission scanning electron microscope (FE-SEM) and the orientation
was analyzed by fast Fourier transform (FFT) images. X-ray diffraction (XRD) analysis confirmed
that the phase was not changed by the electrospinning process and maintained a perovskite
phase. Polarization-electric field (P-E) loops and piezoresponse force microscopy (PFM) were
used to investigate the piezoelectric properties of the piezoelectric nanofibers, according to the
degree of alignment—the well aligned piezoelectric nanofibers had higher piezoelectric properties.
Furthermore, the output voltage of the aligned lead-free piezoelectric nanofibers was measured
according to the vibration frequency and the bending motion and the aligned piezoelectric nanofibers
with a collector rotation speed of 1500 rpm performed the best.

Keywords: lead-free piezoelectric nanofiber; aligned arrays; electrospinning; nanofiber composites;
piezoelectric devices

1. Introduction

In the field of wearable electronic devices, there is a strong demand for portable smart devices that
are not bulky and do not have to be too frequently charged. Thus, producers of wearable electronic
devices are striving to create electronic devices that meet this demand. Piezoelectric modules are
attractive as an emerging solution for this issue because they convert mechanical energy to electrical
energy and harvest energy from motions of the human body [1,2]. For the application of wearable
electronic devices, development of flexible and lead-free piezoelectric materials was necessary but lead
zirconate titanate—Pb(ZrxTi(1−x))O3 (PZT)—piezoelectric ceramic materials that are most widely used
for piezoelectric energy harvesting are brittle and contain harmful lead. On the other hand, flexible
piezoelectric polymers such as polyvinylidenefluoride (PVDF) and P(VDF-trifluoroethylene(TrFE)),
are poor in piezoelectricity and some other ways to improve the piezoelectric properties of PVDF
nanofibers were studied [3]. In response to these challenges, composites of lead-free ceramics and
polymers have been developed and development of nanofiber-based composites has also been studied
to improve flexibility [4–6].

A study on improving piezoelectric properties of piezoelectric nanofibers was also done using
the alignment process of electrospinning [7–9]. Particularly, when the piezoelectric nanofibers were
aligned, both the output voltage and the output current increased over that of the randomly arranged
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nanofibers [9]. This was because the β-phase of the ferroelectric polymer in the nanofiber increased
with the alignment of the piezoelectric nanofibers. The β-phase increase preferentially aligns the main
molecular chains along the nanofiber longitudinal axis and at the same time improves the orientation of
the piezoelectric active dipole (C-F) in a direction perpendicular to this axis. This is consistent with the
preferred dipole arrangement along the direction of the resonant field during nanofiber collection and
the piezoelectric properties seem to improve. However, the research on the alignment of piezoelectric
nanofibers is limited to ferroelectric polymer nanofibers and the alignment of piezoelectric nanofibers
of ceramic/polymer composites has not yet been reported. The piezoelectric properties of piezoelectric
composite nanofibers seem to improve through the alignment process because not only the dipole of
the polymer but also the dipole of the ceramic is aligned and poled along the electric field direction
during the electrospinning process, as shown in Figure 1.

Figure 1. A schematic illustration of aligned dipoles in a polymer region and a ceramic region of the
aligned piezoelectric nanofibers.

In this study, piezoelectric nanofibers of BNT-ST(0.78Bi0.5Na0.5TiO3-0.22SrTiO3)/PVDF-TrFE
composites were fabricated by the electrospinning method and the effects of the alignment degree
of the piezoelectric nanofiber were investigated according to the rotation speeds of the collector
during electrospinning. The microstructure of the collected nanofibers was analyzed by field emission
scanning electron microscope (FE-SEM) and the orientation was analyzed by fast Fourier transform
(FFT) images. The crystal phase of the piezoelectric nanofibers was analyzed by X-ray diffraction
(XRD) analysis and the piezoelectric properties were analyzed by Polarization-electric field (P-E) loops
and piezoresponse force microscopy (PFM). The output voltage of the piezoelectric nanofiber modules
according to the bending motion and vibration frequency was measured by an oscilloscope and the
aligned piezoelectric performed the best.

2. Experimental Procedure

Lead-free BNT-ST piezoelectric ceramics powder were fabricated by a traditional solid-state
reaction method. High purity Bi2O3, Na2CO3, SrCO3 and TiO3 were used as starting materials
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and all raw materials were purchased from Kojundo chemical (Saitama, Japan, purity > 99.9%).
The BNT-ST ceramic particles were controlled to less than 100 µm by mash control. To prepare an
electrospinning precursor solution, PVDF-TrFE copolymers with mole fractions of 75% VDF and
25% TrFE (Measurement Specialties, Hampton, USA), N,N’-dimethylformide (DMF, Sigma-Aldrich,
St. Louis, MO, USA, 99.5%) and acetone (Sigma-Aldrich, St. Louis, MO, USA, 99.5%) were vigorously
mixed at room temperature for 24 h. The weight ratio of each substance in the precursor solution was
as follows: PVDF-TrFE:acetone:DFM = 2:5:5. After stirring, the BNT-ST ceramics powders were added
to the precursor solutions in an amount of 60 wt % and the solutions were vigorously stirred for 24 h
at room temperature to obtain a homogeneous solution.

The homogeneous precursor solution was loaded to a 10 mL plastic syringe with a metallic
needle of 21 G and the needle was connected to a voltage power supplier. A positive high voltage of
10–15 kV was applied and the feeding rate of the precursor solutions was 1 mL/h. The nanofibers
were electro-spun on the aluminum foil attached to a cylindrical drum, which was placed at a distance
of 10 cm from the tip of the needle. To align the nanofibers, the rotation speed of the cylindrical drum
was adjusted to 0 rpm, 500 rpm, 1000 rpm and 1500 rpm. All the experiments were conducted at room
temperature under a relatively low humidity of 20–40%.

After the electrospinning, the as-spun BNT-ST nanofibers with different rotation speeds were
fabricated as piezoelectric modules with interdigitated copper electrodes between the bottom and top
of the nanofibers by a Warm Isotropic press (WIP) process at 70 ◦C and 80 bar and then high voltages
of 1 kV were applied to the fabricated piezoelectric modules at room temperature for 1 h for the poling
process to improve of the piezoelectric performance [5].

A FE-SEM (JSM-6700F, Tokyo, Japan) was used for microstructure characterization of the BNT-ST
nanofiber according to the rotation speed of the collector. The crystal structures of the BNT-ST
nanofibers collected at the cylindrical drum with different rotational speeds were analyzed by XRD
(max 2200V, Rigaku Corporation, Tokyo, Japan). The local piezoelectric response was characterized
using PFM (NanostationII, SiS-GmbH, Kaiserstrasse, Germany). The output voltages as a function of
frequency for the nanofibers with different collector rotation speeds were measured using a vibration
exciter (Type 4809, Bruel & Kjaer, Nearum, Denmark), a function waveform generator (33220A, Agilent,
California, USA), a bipolar amplifier (HAS 4014, Yokohama, Japan) and an oscilloscope (Wavejet322,
LeCroy, New York, USA). The output voltages according to the bending motion of 1 Hz using a
bending machine (SPG Co., Ltd., Incheon, Korea) were measured and recorded by an oscilloscope
(Wavejet322, LeCroy, New York, NY, USA).

3. Results and Discussion

The SEM images and fast Fourier transform (FFT) images of the BNT-ST nanofibers according
to the rotation speed of the collector are shown in Figure 2a,b shows the diameter distribution of
the BNT-ST nanofibers calculated based on the SEM images. The FFT image shows grayscale pixels
distributed in a pattern that reflects the degree of fiber alignment in the SEM image [8]. Although the
BNT-ST nanofibers with no rotation of the collector showed a random array; as the rotation speed of
the collector increased, the tendency to alignment of the BNT-ST nanofibers in one direction became
stronger. In Figure 2a, the BNT-ST nanofibers with a 0 rpm rotation speed showed a random array in
the SEM images and the FFT image generated from the original SEM images showed the grayscale
pixels distributed in a symmetrical, circular shape. In contrast, the BNT-ST nanofibers with a rotation
speed of 1500 rpm showed the aligned nanofibers in the SEM images and the FFT output image
generated the grayscale pixels distributed in a non-random, elliptical distribution. In other words, the
faster the rotation speed of the collector, the more the BNT-ST nanofibers were aligned in one direction
and the FFT output image revealed greater elliptical distribution. In Figure 2b, the smaller average
diameter and slightly broader diameter distribution of the BNT-ST nanofibers were observed with
increasing the rotation speed of the collector. This is because the rotation speed of the collector induced
tensile stresses on the nanofibers, before being spun around the collector [10,11].
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Figure 2. (a) Scanning electron microscope (SEM) images, Fast Fourier-transform (FFT) images and
(b) nanofiber diameter distribution of BNT-ST nanofibers according to the rotation speed of the collector.

Figure 3 shows the XRD patterns of the BNT-ST nanofibers according to the rotation speed
of the collector. First, the XRD peaks at 2θ values of about 19.8◦, which corresponds to the (110)
reflections of the β phase of the PVDF-TrFE polymer, can be induced by an electrospinning process [12].
The non-polar α-phase of the PVDF-TrFE polymer is generally converted into the polar β-phase due to
the electrospinning process and the piezo- and pyroelectric properties mainly result from the β-phase.
As a result, the piezoelectric properties of polymer parts are improved by electrospinning. Second,
five prominent peaks at 2θ values of about 32.7◦ (110), 40.3◦ (111), 46.8◦ (200), 52.7◦ (210) and 58.1◦

(211) corresponding to the perovskite crystal phase of BNT-ST [13] were observed in XRD patterns of
the BNT-ST nanofibers with the different collector rotation speeds. This means that the crystal phase
of the BNT-ST ceramics did not change with the electrospinning process and the β-phase peak of the
piezoelectric polymer and the perovskite peaks of the piezoelectric ceramics coexisted in the nanofiber.
Furthermore, as the rotation speed of the collector increased, the polar β-phase peak intensity of
PVDF-TrFE was similar but the perovskite crystal peak intensity of BNT-ST was significantly increased.
In other words, the β-phase of the piezoelectric polymer was not significantly affected by the rotation
speed of the collector but the crystal phase of the BNT-ST ceramics was remarkably improved with
increase in the rotation speed of the collector. From these results, it is expected that the piezoelectric
performance will be improved as the rotation speed of the collector increases.



Nanomaterials 2018, 8, 206 5 of 9

Figure 3. X-Ray Diffraction (XRD) patterns of the BNT-ST nanofibers according to the rotation speed of
the collector.

To evaluate the nanoscale electromechanical response of the BNT-ST nanofibers with different
collector rotation speeds, 3D topography images, phase hysteresis loops and amplitude hysteresis
loops were analyzed by PFM as a function of applied DC voltage from −8 V to 8 V, as shown in Figure 4.
In the PFM 3D topographic images, with more embedded BNT-ST ceramics, the images are brighter (or
slightly protruding) and two areas of P1 (higher ceramic content area) and P2 (lower ceramic content
area) were intensively analyzed. The PFM phase hysteresis loops of the BNT-ST nanofibers prepared
at different rotation speeds of the collector are directly associated with the polarization switching of
the P1 and P2 local regions and the phase changes of the phase hysteresis loops for all the BNT-ST
nanofibers were about 180◦, which indicated ferroelectric switching under an applied bias. The dipoles
in both BNT-ST ceramic and P(VDF–TrFE) polymers seem to be poled along the electric field direction
during the electrospinning process and both the P1 and P2 areas were likely to have aligned dipoles
regardless of the rotation speed of the collector instead of randomly oriented dipoles [14]. In the
amplitude (displacement) hysteresis loops, butterfly-shaped hysteresis loops, a typical strain-electric
field (S-E) shape of a piezoelectric material [14,15], were observed at both the P1 area and P2 area of
all BNT-ST nanofibers with different collector rotation speeds. The maximum strain (Smax) and the
longitudinal piezoelectric coefficient (d33) were calculated based on the amplitude hysteresis loops.
For the BNT-ST nanofibers with a 0 rpm rotation speed, which has a random array in the SEM images
in Figure 2, 16.95 pm of Smax and 13 pm/V of d33 were observed in the P1 area and 0.92 pm of Smax

and 0.7 pm/V of d33 in the P2 area. On the other hand, the BNT-ST nanofibers at a rotation speed
of 1500 rpm, which showed the aligned nanofibers in the SEM images in Figure 2, 192.87 pm of Smax

and 148.1 pm/V of d33 were observed in the P1 area and 11.04 pm of Smax and 8.4 pm/V of d33 in
the P2 area. These results mean that the BNT-ST ceramic phase had greater piezoelectricity than
the P(VDF–TrFE) polymer phase and as the rotation speed of the collector increased, the BNT-ST
nanofibers became aligned in the advancing direction and had a better piezoelectricity. Furthermore,
the piezoelectric coefficient d33 (148.1 pm/V) of the aligned BNT-ST nanofibers at P2 was considerably
larger than that of the reported values for the PVDF nanofibers (−58.5 pm/V) and PZT nanofibers
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(83.4 pm/V) [3,15] and the piezoelectricity of the nanofibers seemed to be improved by the alignment
process during electrospinning.

Figure 4. Piezoresponse force microscopy (PFM) images, phase hysteresis loops and amplitude
hysteresis loops of the BNT-ST nanofibers according to the rotation speed of the collector: (a) 0 rpm,
(b) 500 rpm, (c) 1000 rpm and (d) 1500 rpm.
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Figure 5 shows that the polarization versus electric field (P-E) hysteresis loops of the BNT-ST
nanofiber modules with the bottom and top interdigitated copper electrodes were measured according
to the rotation speed of the collector at room temperature, a frequency of 2 Hz and an applied voltage of
2 kV/mm. The inset graph of Figure 5 gives the Pmax (maximum polarization) values calculated based
on the P-E hysteresis loops of the BNT-ST nanofiber modules according to the rotation speed of the
collector. As the rotation speed of the collector increased, the Pmax values increased. Particularly, in the
BNT-ST nanofiber modules with a rotation speed of 1500 rpm, which were the aligned nanofibers, the
Pmax value was 1.62 µC/cm2. This value was about 2.7 times higher than the Pmax value (0.6 µC/cm2)
of the randomly arrayed BNT-ST nanofiber modules with a 0 rpm rotation speed. On the other
hand, it was confirmed that the Pmax value of the BNT-ST nanofiber modules with the rotation speed
of the collector from 0 rpm to 1000 rpm was slightly increased to from 0.6 µC/cm2 to 0.8 µC/cm2.
These results confirmed that a slight increase in the alignment degree of the BNT-ST nanofibers does
not contribute significantly to the piezoelectric performance and there is the sufficient alignment degree
for the improved piezoelectric performance. In other words, as the rotation speed of the collector
increased until over 1500 rpm, the aligned BNT-ST nanofiber modules showed a higher degree of
polarization and better piezoelectric characteristics.

Figure 5. P-E hysteresis loops of the BNT-ST nanofiber modules according to the rotation speed of
the collector. The inset shows maximum polarization values (Pmax) according to the rotation speed of
the collector.

Figure 6a shows the output voltages of the BNT-ST nanofiber modules with different collector
rotation speeds according to vibration frequencies from 0 Hz to 3500 Hz. The output voltages of all
the BNT-ST piezoelectric nanofiber modules improved with an increase in the vibration frequency
and saturated at about 2000 Hz. The higher the rotation speed of the collector and the more aligned
the BNT-ST nanofibers became and the output voltages according to the frequency for the BNT-ST
nanofiber modules were higher. For the well-aligned BNT-ST nanofiber modules with a rotation speed
of 1500 rpm, the saturated Vpp value at 2000 Hz was 0.99 V, which is about a 23.7% increase over
the 0.80 V of the saturated Vpp of the randomly arranged BNT-ST nanofiber modules with a 0 rpm
rotation speed. As the rotation speed of the collector increased, the saturated Vpp values at 2000 Hz
increased. The output voltages of the BNT-ST nanofiber modules with different collector rotation
speeds according to bending motion with 1 Hz are shown in Figure 6b. Although the randomly
arranged BNT-ST nanofiber modules with a 0 rpm rotation speed had a Vpp value of 0.31 V, the
well-aligned BNT-ST nanofiber modules with a rotation speed of 1500 rpm had a Vpp value of 0.56 V.
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As the rotation speed of the collector increased, the Vpp value according to the bending motion
increased. These results indicate that when the piezoelectric nanofibers were well aligned in a certain
direction by the increase in the rotation speed of the collector and the well-aligned BNT-ST nanofiber
modules had better piezoelectric characteristics. The electric displacement in the BNT-ST nanofiber
modules between adjacent electrode fingers of the interdigitated electrodes was parallel to aligned
direction and as the polarized direction and the applied voltage direction match, we considered that
the piezoelectric characteristics are maximized.

Figure 6. The output voltage according to (a) vibration frequency and (b) bending motion for the
BNT-ST nanofiber modules with different collector rotation speeds.

4. Conclusions

Flexible lead-free piezoelectric nanofibers based on BNT-ST ceramic and PVDF-TrFE copolymers
were fabricated by an electrospinning method and the lead-free piezoelectric nanofibers were well
aligned with a higher collector rotation speed. The microstructure, orientation and crystal structure of
the lead-free piezoelectric nanofibers were observed by FE-SEM images, FFT images and XRD analysis.
Compared to randomly arranged BNT-ST nanofiber modules, the well-aligned BNT-ST nanofiber
modules demonstrated higher piezoelectric characteristics in the P-E hysteresis loop analysis and
in the output voltage analysis according to vibration frequency and bending motion. In particular,
the well-aligned BNT-ST nanofiber modules with a rotation speed of 1500 rpm had a saturated Vpp

value of 0.99 V at 2000 Hz in the vibration frequency test and a Vpp value of 0.56 V in the bending
motion. In other words, as the piezoelectric nanofibers became more aligned in a certain direction by
the increase in the rotation speed of the collector, the better piezoelectric characteristics were achieved.
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