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Abstract: When nanoparticle self-assembly takes place in an anisotropic liquid crystal environment,
fascinating new effects can arise. The presence of elastic anisotropy and topological defects can direct
spatial organization. An important goal in nanoscience is to direct the assembly of nanoparticles
over large length scales to produce macroscopic composite materials; however, limitations on spatial
ordering exist due to the inherent disorder of fluid-based methods. In this paper we demonstrate
the formation of quantum dot clusters and spherical capsules suspended within spherical liquid
crystal droplets as a method to position nanoparticle clusters at defined locations. Our experiments
demonstrate that particle sorting at the isotropic–nematic phase front can dominate over topological
defect-based assembly. Notably, we find that assembly at the nematic phase front can force
nanoparticle clustering at energetically unfavorable locations in the droplets to form stable hollow
capsules and fractal clusters at the droplet centers.
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1. Introduction

Topological defects in nematic liquid crystals (LCs) are known to drive the self-assembly of
included colloidal particles through elastic interactions with the medium [1–3]. Colloidal particles
can be located and arranged in two- and three-dimensional packings by the action of defect lines [1]
to produce custom lattice-like structures. In general, several types of self-assembled structures have
been constructed in different media such as linear chains [4], clusters [5], and structured arrays [6,7].
These self-assembled structures can be driven by a variety of forces, such as kinetics of the particles
themselves [8]. Two-dimensional (2D) structures composed of colloidal particles have also been
formed on the surface of liquid crystal droplets suspended in water and localized at topological
defects on LC droplet surfaces [9–11]. This has been successfully achieved using both nano- and
micro-particles [12,13] as well as biological molecules [14], to achieve unique structures.

The assembly of very small particles (~10 nm in diameter or less) presents more of a challenge as
the particles become subject to strong Brownian fluctuations where the size of the particles approaches
that of the solvent molecules. If the energy scale of these thermal fluctuations (~kT) also becomes
comparable to the free energy cost of inserting a particle into the anisotropic liquid crystal medium,
spontaneous assembly mediated by the Frank elastic constants [3] can occur. Dispersed particles in the
liquid crystal are able to explore the anisotropic fluid thermally and assemble at free energy minima
by clustering together and/or locating in topological defect cores.

There have been several recent attempts to use liquid crystal defects to assemble and cluster
nanoparticles of several types, including semiconducting (e.g., quantum dots), metallic (e.g., gold,

Nanomaterials 2018, 8, 146; doi:10.3390/nano8030146 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://dx.doi.org/10.3390/nano8030146
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2018, 8, 146 2 of 11

silver), and magnetic particles [15]. Such assemblies may exhibit collective electronic, photonic,
or magnetic properties not seen in isolated nanoparticles [16,17]. Typically, particle clustering
experiments result in the formation of isolated aggregates with no internal ordering or position
control, although the deliberate seeding of defect points [18] or lines [19] can provide an organizing
mechanism. An alternative approach to forming nanoparticle assemblies uses monodisperse particles
and carefully designed ligands [20]. This work has resulted in fascinating 2D arrangements of particles;
however, the technique has not been expanded into large-scale structures in the third dimension.

In this work we were interested in finding a way to reliably direct the spatial organization of
nanoparticle clusters and other assemblies. For example, can we make a regular array of small
nanoparticle clusters, each of a well-defined size? Our approach is to use liquid crystal droplets
in the nematic phase to control the positioning and size of these clusters. Micron-scale droplets
containing clusters should be easy to manipulate by external methods (including, optical trapping and
surface patterning).

The nematic liquid crystal phase is an anisotropic fluid characterized by orientational order
defined locally by the director [21]. Stable topological defects in liquid crystals occur where there
is orientational frustration, for example, in bulk, at the center of a spherical nematic droplet or at
the poles of a sphere coated with a thin film of smectic liquid crystal [22]. When considering a thin
film of nematic liquid crystal, four +1/2 defects occur at locations that form a tetrahedron through
a sphere [23]. One way to reliably control the location of these topological defects in liquid crystals is
to control the geometry of the material and anchoring conditions at its interfaces. Take for example,
a spherical liquid crystal droplet. Homeotropic anchoring conditions (whereby molecules are oriented
perpendicular to the interface) will lead to a radial droplet structure, with a hedgehog defect located at
the center (Figure 1a,b). In contrast, planar anchoring conditions (whereby molecules lie parallel to
the LC/solution interface) will tend to lead to a bipolar structure with two defects located at opposite
poles of the droplet (Figure 1c,d).
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Figure 1. Two common director configurations for a nematic liquid crystal droplet. Radial (single defect
in the center): (a) schematic; and (b) crossed polarizer image of a droplet suspended in aqueous solution,
and bipolar (two surface defects); (c) schematic; and (d) crossed polarizer image of a droplet suspended
in aqueous solution. Scale bar = 20 µm.

In previous work, large particles ranging from hundreds of nanometers to several microns in
diameter were shown to pin to surface defects in liquid crystal droplets [9]. In these experiments
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the particle is placed near the defect and subsequently moves to the defect core. We take a different
approach, by dispersing nanoparticles into droplets in the isotropic phase, and then subsequently
cooling the droplets to the nematic phase. This approach is partially motivated by the inherent
difficulties in manipulating individual nanoparticles. It also allows us to begin with a uniform particle
distribution and observe cluster formation free from outside manipulation.

To allow spontaneous self-assembly at a defect without the influence of any external force,
the particles must be very small and therefore mobile in the liquid crystal phase, taking advantage of
Brownian fluctuations to locate at defect points. For this reason, we chose to work with 6-nm quantum
dots (QDs) for their bright emission properties, although similar experiments using any nanoparticle
type (gold, metal oxide, etc.) would be equivalent.

While self-assembly via topological defect locations is an effective strategy to pursue,
recently another mechanism for spatial nanoparticle sorting in liquid crystals was developed [18,20].
Results demonstrated that the moving isotropic to nematic phase front can act as an elastic sorting
mechanism for the tiny nanoparticles. Of particular interest is the formation of stable microcapsules or
“shells”. These structures were formed using quantum dots with mesogenic ligands [24] providing
an added degree of control in particle dispersion and cluster stabilization. When closely packed,
the mesogenic ligands provide a short-range attractive interaction between nanoparticles.

In this paper we explore these two assembly mechanisms in liquid crystal droplets with different
surface anchoring conditions (planar and homeotropic). These two mechanisms we title “equilibrium
defect sorting” and “phase transition sorting”. By varying the droplet cooling rate through the isotropic
to nematic phase transition, we observed different particle distributions in the liquid crystal droplets
induced by defect locations and particle assembly at energetically unfavorable locations. In addition,
we found that it was also possible to form single nanoparticle microcapsules [24] at the center of liquid
crystal droplets.

Understanding the competition between the defect-based assembly and phase-transition-induced
assembly is important for controlling the position of nanoparticle clusters over large length-scales
without the need for chemical alignment layers or expensive lithography techniques. By investigating
assembly with a controlled spherical droplet geometry, we can compare assembly mechanisms more
directly, probing the effects of droplet geometry and size, as well as cooling rate, on cluster formation.
In addition, we propose that clusters isolated in individual droplets can be close-packed to produce
macroscopic assemblies of nanoparticle clusters in two and three dimensions.

2. Materials and Methods

In this work we used quantum dots functionalized with a mesogenic ligand (8, Scheme 1).
This ligand is an amine-terminated variant of the calamitic side-on attaching liquid crystals investigated
by the groups of Dunmur [25] and Vashchenko [26]. It was prepared following the sequence of reactions
reported by Quint and coworkers [27], and then exchanged with octadecylamine surface ligands on
commercial CdSe core/ZnO shell quantum dots (NN Lab Inc., Fayetteville, AR, USA) following our
reported procedure [28]. It was targeted for its ability to stabilize particle clusters via short range
non-covalent interactions [19], which would facilitate particle dispersion in the host liquid crystal
matrix (4-cyano-4′-pentylbiphenyl, “5CB”) and produce a uniform dispersion of modified QDs in the
isotropic phase [20]. In addition, above a threshold concentration, the ligand allows the formation of
micron-scale capsules [24,27] by a unique phase separation process. Herein, we aimed to form these
structures in the more controlled liquid crystal droplet geometry.
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Scheme 1. Sequence of reactions used to prepare the mesogenic ligand.

The degree of ligand exchange under different conditions was quantified using 1H NMR
spectroscopy as previously reported [28], revealing a 9:1 surface ratio of 8 to octadecylamine.

The modified particles are uniformly dispersed in 5CB via heat bath sonication at 50 ◦C for 2 h,
verified by fluorescence microscopy. Particle concentrations used in these experiments varied between
0.05 and 0.2 wt %.

Once a uniform particle dispersion in 5CB is achieved, the droplets can be formed. We pipette
3 µL of the QD-5CB composite into 300 µL of either Millipure water or 1.0 wt % polyvinyl alcohol
(PVA)/water solution at a temperature of 55 ◦C. 5CB droplets in water typically exhibit homeotropic
boundary conditions resulting in a radial configuration which was verified by cross-polarized
microscopy, whereas droplets in PVA/water solution exhibit planar boundary conditions resulting in a
bipolar configuration [29], as illustrated in Figure 1c. To follow standard practice for creating nematic
droplets, we also dispersed the droplets in a solution of 1 wt % sodium dodecyl sulfate (SDS) to
achieve homeotropic boundary conditions, and pure glycerol to produce planar boundary conditions.
After adding the QD-5CB composite to the aqueous solution, the system was then tip sonicated using a
cell disrupter for approximately one second, until the resulting emulsion appeared cloudy, keeping the
system above the nematic–isotropic transition temperature. The rapid motion of the tip sonicator
forms droplets of varying sizes in a very small amount of time. Isotropic droplets were then cooled
into the nematic phase at two different cooling rates, 1 ◦C/min and ~200 ◦C/min, and QD cluster
formation and location were observed using a fluorescence microscope.

Fluorescence microscopy was used to image the spatial distribution of QDs in the liquid crystal
droplets. In the experiments presented here we used CdSe/ZnS core shell QDs (NN-labs) with
an emission wavelength centered at 620 nm. Fluorescence imaging was carried out on an upright
Leica DM2500P microscope in reflection mode using a 20× objective. A white-light mercury lamp
illumination source with a 515–560 nm band-pass filter was used for QD excitation. Emission was
detected using a 580 nm dichroic mirror and a 590 nm long pass filter. The microscope can also be
used in transmission mode with a white light source and crossed polarizers to image birefringence.
The droplet suspensions were mounted on standard glass slides under a cover slip for observations.

3. Results

3.1. Slow Cooling Experiments

Through our experiments, we utilize two different molecular orientations for the droplets:
radial and bipolar. Schematics for these molecular orientations are shown in Figure 1. In our
first set of experiments, the liquid crystal droplets with dispersed QDs were cooled at 1 ◦C/min.
Experiments were carried out at two different concentrations of QDs: 0.05 wt % and 0.2 wt %. The lower
concentration was specifically chosen to prevent spherical shells and other macroscopic structures
from forming via the transition templating process, as we recently reported for the same system in
bulk at concentrations above ~0.15 wt % [24], and to obtain a small cluster. Figure 2 shows our results
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from the slow cooling experiments in which we compared radial and bipolar droplet configurations.
Radial droplets resulted in QD clusters localized at the hedgehog defect at the center as shown in
Figure 2a. Co-localization was verified using a combination of both fluorescence and cross-polarized
microscopy. Cluster sizes varied droplet to droplet, with larger droplets producing larger central
clusters. This result is expected, assuming that all droplets begin with a uniform dispersion of QDs
and that these dispersed droplets all end up at the central defect after the liquid crystal transitions to
the nematic phase.
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3.2. Rapid Cooling Experiments

In a second series of experiments we repeated the procedure described above, but with
a significantly faster cooling rate of ~200 ◦C/min. This rapid cooling rate was chosen to match
that used in recent experiments where we reported the formation of spherical QD shells by phase
transition templating [24]. We first tested the low concentration QD-5CB mixture (0.05 wt %) using
homeotropic boundary conditions, and again saw QD clusters forming at the center hedgehog defect.
However, when droplets cooled with planar boundary conditions were examined, we observed
a surprising result—the QD cluster also formed at the center (Figure 3a)—in contrast to the
surface-localized particles exhibited for low cooling rates in Figure 2. Using cross-polarized microscopy,
we observed that the cooled droplets in fact had radial defect conformations, not the expected
bipolar conformation (Figure 2c for example). This result clearly indicates that within the appropriate
parameter range, phase front sorting dominates the assembly process over the slower topological
defect assembly process.

We then tested the same fast cooling rate at the higher concentration of QDs in 5CB
(0.2 wt %). Cooling these radial droplets produced hollow microshells located at the droplet centers.
These microshells are identical to those discussed in our previous publication [24]. However, in this
case, we demonstrated that it is possible to form a single hollow shell in the center of a liquid crystal
droplet (Figure 4). While the previously reported bulk method for microshell formation is limited by
spatial control, this new method provides a mechanism to form individual microshells at specified
locations—that is, at the center of LC droplets.
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3.3. Cluster Scaling Analysis

To quantify the clustering formation process we carried out a scaling analysis for the phase
transition sorting mechanism that produced the central cluster, as shown in Figure 3. Clustering via the
two different formation mechanisms produces particle packings that are quite different. Slow particle
assembly by cluster-cluster aggregation and subsequent topological defect localization is expected
to produce fractal-like packing with a mass-scaling dimension of 1.8 [30,31]. In contrast, the phase
front templating method has been shown to produce very dense amorphous particle assemblies,
including the micro-shells we demonstrated in Figure 4 [24]. A notable benefit of forming QD
clusters in the confined geometry of a droplet is that it gives us the ability to quantify their spatial
characteristics—since we know the concentration of particles and the droplet size, we can estimate
the mass of quantum dots in each droplet. We can characterize a cluster of nanoparticles by its fractal
dimension, D, where the relation between the mass of an object and its size is given as:

M = ArD (1)

where M is the mass of the object, A is a constant, and r represents the radius of the cluster. To calculate
the mass-scaling dimension of nanoparticle clusters, we measured cluster size as a function of
cluster mass.

In the perfect case, all particles in a droplet would be driven to the central point, and the mass of
a specific cluster would simply be obtained as M = c 4

3πR3, where c is the initial particle concentration
before the phase transition (in the isotropic phase) and R is the radius of the droplet. However,
we observed that droplet images under fluorescence microscopy indicated some emission in regions
other than the central defect. This leads to the conclusion that not all of the nanoparticles were swept
up during the isotropic–nematic phase transition and that some remain dispersed in the nematic
phase. When estimating the mass scaling dimension of our clusters, we corrected for this effect
to obtain more accurate measurements of the cluster mass. To calculate a ratio of the number of
nanoparticles in the cluster compared to the number of nanoparticles in the bulk droplet, fluorescence
intensity was integrated over the entire droplet using ImageJ and a corrected cluster mass calculated.
In addition, background fluorescence away from the droplet was measured and subtracted to account
for background noise.

Droplet and cluster diameters were measured using bright field and fluorescence microscopy.
To measure cluster diameters, three pixel-wide intensity line profiles were measured from fluorescence
images and fitted with a Gaussian profile (Figure 5a). The diameter of the cluster was taken as the
full-width half-max of the profile.
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Figure 3. Quantum dot cluster imaged using (a) fluorescence microscopy and (b) cross-polarized
bright field microscopy at the center of a droplet designed to exhibit the bipolar defect configuration.
After cooling to the nematic phase, particles were found to be located at a single central point in the
radial defect configuration. Scale bars = 20 µm.
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Figure 5. Fluorescence intensity measurements across quantum dot clusters in a droplet as determined
using a one-dimensional (1D) line profile across the microscope image. (a) Radial droplet example
measured across the central cluster (as shown in Figure 1a) showing a peak intensity at the center of a
droplet with Gaussian fit; (b) Similar data for a bipolar droplet measured across the surface clusters
(as shown in Figure 1c) showing two peak intensities at opposite poles of the droplet.

The volume of each droplet was determined, and finally the mass of the droplet was determined
using the density of 5CB. Since we know the mass of the 5CB droplet and the QD concentration by
wt %, we can calculate the total mass of QDs in each droplet. With the mass and size of the quantum
dot clusters, the packing fraction can be obtained. Figure 6 shows cluster mass as a function of
cluster radius for an ensemble of different QD clusters formed using the phase front assembly method
(rapid cooling, lower concentration). In this plot we assumed a 5% variation on the concentration
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of quantum dots in isotropic 5CB. The chi-square test resulted in a value of 21. Although not an
excellent fit to the data, which exhibits significant scatter, this fit allowed us to quantify the linear trend,
observed visually. The slope of this fit represents a scaling dimension of 2.5 ± 0.4, which is relatively
dense and consistent with the theoretical value for three-dimensional (3D) ballistic aggregation [30,31].
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4. Discussion

Our initial hypothesis was that QD cluster patterning would be achieved through equilibrium
defect formation in a liquid crystal droplet in a similar mechanism to that recently reported for
micron-scale particles [10–12]. However, we also proposed that rapid cooling might lead to the
formation and stabilization of out-of-equilibrium structures such as the recently reported QD spherical
shells reported at high cooling rates in a similar system [24]. To investigate these mechanisms,
we carried out two sets of experiments, focused on slow cooling and rapid cooling through the
isotropic to nematic transition. The droplet geometry was particularly useful in these experiments
because the ground-state topological defect configurations are well defined. In addition, the particle
concentration within the droplet is easily controlled.

Two Different Mechanisms for Assembly

In this paper we considered two separate mechanisms responsible for the spatial organization
of particles in liquid crystal droplets. Overall, the collection of quantum dots occurred at the
defect location (i.e., center) of the droplet by a simple free energy argument. There are three major
contributions to the free energy for quantum dots inside a liquid crystal droplet: elastic forces, phase
transition dynamics (Landau theory (order parameter)), and the actual insertion of quantum dots.
This can be expressed as F = Fel + FLdG + FQDs. The elastic free energy is the classic Frank Free energy
which consists of splay, twist, and bend energies; these are the common deformations of a liquid
crystal. The Landau de Gennes (LdG) free energy governs the phase transition, and the quantum
dot free energy can be considered to represent the particle fraction inside the liquid crystal medium.
The particles are swept up due to the changes governed by FLdG, and the location is then governed by
the elastic forces that could possibly move the formed cluster to defect locations.

In the first mechanism, “equilibrium defect assembly”, the transition particles assemble in the
topological defects, producing an 3D aggregate with a fractal-like mass scaling. This is consistent
with our previous observations in bulk liquid crystal [20]. Given sufficient time, particles initially
not located at defects will eventually migrate there by thermal motion and “fall in” to the aggregate.
This process is most likely to occur at very low particle concentrations.
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The second mechanism is through “phase transition assembly”. In this mechanism, recently
reported by our group [20,24], particles preferentially locate in a shrinking isotropic domain within the
droplet as it cools through the isotropic to nematic phase transition. The particles are pushed close
together as the isotropic phase shrinks to form a cluster.

The first mechanism for nanoparticle sorting in the droplets concerns their tendency to cluster
and localize at topological defects in the liquid crystal. Spherical particles of all sizes have been shown
to accumulate at defect points in liquid crystals [3]. This is a relatively slow size-dependent process,
whereby particles in the nematic phase tend to locate at points of low order to minimize the elastic
deformation of the liquid crystal by radially symmetric particles.

The second mechanism is related to the propagation of the isotropic to nematic phase front. In this
case, particles preferentially locate in shrinking isotropic domains at the phase transition and are
effectively pushed together by the nucleating, growing nematic domains [20,24], entropically repelled
by the ordered environment of the nematic phase. This sorting process can occur rapidly and, if the
particles are small enough, provides an excellent mechanism to assemble nanoparticle-based structures.

In all of our droplets, we started with a uniform particle distribution in the isotropic liquid
crystal phase. Then, following a cooling step, the liquid crystal transitioned into the nematic phase.
Our results highlight several possibilities for controlling particle organization.

Using different cooling rates, we observed evidence of competition between the two different
assembly mechanisms. Six-nanometer nanoparticle diffusion in the nematic phase can be generally
considered as an Brownian random walk, modified by local director orientation. Particles and small
clusters will explore the droplet until they locate in a topological defect. We can characterize this
motion by timescale, τQD, the time for a particle to travel a mean squared displacement (MSD) equal
to the radius of the droplet.

As nanoparticles and small clusters of particles move randomly, they may encounter other
particles or clusters, increasing their size. This will further slow their diffusion rate, increasing τQD,
and thus can be described as cluster-cluster aggregation in an anisotropic environment. Slow cooling
the droplet through the phase transition tends to produce many small nematic domains which
nucleate and grow. At slow cooling rates this process does not appear to impact the migration
of the nanoparticles to topological defects, either at the center of a radial droplet, or on the surface of
a bipolar droplet (Figure 1a,c).

Rapid cooling through the phase transition allows the second assembly mechanism to dominate.
In this case we typically observe a single-phase front rapidly moving across the droplet. If the phase
front transition timescale, τPF (the time for the phase front to travel the radius of the droplet) is short
compared to the QD clustering timescale (τPF < τQD), we expect the phase front particle sorting to
dominate over Brownian motion. A simple analysis supports our assumptions. The diffusion constant
of a quantum dot in isotropic 5CB was estimated to be 4 µm2/s. This was obtained from viscosity
measurements from Reference [32] and from using the Einstein–Stokes relation for diffusion, with T
above the isotropic–nematic phase transition point. These values yield a linear diffusion length for the
QDs of ~5 µm/s in a 3D droplet. To quantify the phase front timescale (τPF), we analyzed a 60-µm
diameter droplet and measured the phase front velocity to be 27 µm/s. These numbers illustrate that
we can expect the phase front to move approximately five times faster than the linear diffusion of an
average QD in the nematic phase.

We can relate the phase transition assembly process to a non-quasistatic compression. In the case
that phase transition assembly dominates, the particles are not able to diffuse away before being swept
up by the phase boundary. The particles then follow the direction of the phase front, which depends
on the temperature gradient direction in the liquid crystal droplet. If all of the particles are swept
up, and the cluster is of sufficient size compared to the size of the droplet, Frank elastic effects are
insufficient to move the large cluster, and so the liquid crystal will reorient itself around the cluster to
minimize the free energy of the system. This reorientation may not always be the lowest energy state
possible, as seen with the surprising example of a cluster stabilized at the center of a bipolar droplet
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(Figure 3). This phase front aggregation process could be described as a ballistic diffusion-limited
aggregation process as particles are pushed together in the shrinking isotropic domain.

5. Conclusions

In this paper we investigated the spontaneous assembly of nanoparticle clusters in the confined
environment of a liquid crystal droplet using mesogen-functionalized quantum dots. Varying surface
anchoring conditions at the droplet/water interface allowed us to tune between radial and bipolar
topological defect configurations. By tuning particle concentration and cooling rate across the isotropic
to nematic phase transition, it was possible to observe the competition between two distinct assembly
mechanisms: equilibrium defect assembly and phase transition assembly. We observed two key
effects. First, slow cooling allows for ground state defects to template QD cluster formation, while fast
cooling allows for the isotropic–nematic phase boundary to template the clusters. Secondly, we noticed
that phase transition templating can be used to force non-equilibrium defect configurations, such as
a radial director distribution, despite initial bipolar anchoring conditions. This droplet technique also
provides a method to control quantum dot micro-shell (and cluster) formation location, opening up
the possibility for easy spatial control of micron-scale nanoparticle assemblies.
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