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Abstract: This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin
dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer
(LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized
by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction
(XRD) and Raman spectrum. The acetylene sensing properties were investigated using different
working temperatures and gas concentrations. An optimal temperature of 90 ◦C was determined, and
the Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene, in
terms of response, repeatability, stability and response/recovery characteristics, which were superior
to the pure SnO2 and SnO2/rGO film sensors. The sensing mechanism of the Ag–SnO2/rGO sensor
was attributed to the synergistic effect of the ternary nanomaterials, and the heterojunctions created
at the interfaces between SnO2 and rGO. This work indicates that the Ag–SnO2/rGO nanocomposite
is a good candidate for constructing a low-temperature acetylene sensor.
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1. Introduction

Acetylene (C2H2) is a colorless and highly combustible gaseous hydrocarbon, widely used as
a fuel in many industrial fields, such as metal welding [1], polyacetylene preparation [2], lithium-ion
batteries [3], and conductive plastic manufacturing [4]. However, acetylene is unstable and there
is a huge potential risk of fire or explosive accidents during its compression and heat treatment,
or due to leakage. Furthermore, the dissolved content of acetylene gas in power transformer oil is
critical to the safety and reliability of the transformer system [5,6]. Therefore, reliable, economical
and portable acetylene gas sensors are of great importance to many applications. In recent years,
a lot of interest has been attracted surrounding the development of effective techniques and sensitive
methods for acetylene gas detection, such as photoacoustic spectroscopy [7], optical fiber [6,8] and
metal-oxide semiconductors (MOS) and nanomaterial-based sensors (i.e., PdO-decorated SnO2 [9],
Au/multi-wall carbon nanotubes [10], Sm2O3-decorated SnO2 [11], Ag-loaded ZnO [12–14] and
NiO/SnO2 heterostructures [15]). Among them, metal oxides have become important candidates
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for acetylene sensing due to their unique advantages—such as their small size and simplicity of
integration—but they lack selectivity towards different gas species, and often require high operating
temperatures and have high power consumption [16–20].

The state-of-the-art MOS-based acetylene sensor focuses on noble metal-metal oxide nanohybrids
and heterometal oxide nanostructures. Zhang et al. reported on the hydrothermal synthesis of hierarchical
nanoparticle-decorated ZnO microdisks for acetylene gas sensing at 420 ◦C [21]. Tamaekong et al.
synthesized Pt/ZnO thick film, using the flame spray pyrolysis (FSP) technique, and a low detection
limit for 50 ppm acetylene gas was obtained at an operating temperature of 300 ◦C [22]. Chen et al.
synthesized Pd-doped SnO2 nanoparticles using a hydrothermal method for detecting acetylene gas
dissolved in power transformer oil, indicating a sensor response of 7.22 for 100 ppm acetylene at
350 ◦C [23]. Zhou et al. fabricated a planar-type acetylene gas sensor based on Sm2O3-decorated SnO2

heterostructures, and showed that the optimum operating temperature of the sensor for 50 ppm of
acetylene is 260 ◦C [11]. Uddin et al. developed a novel flexible acetylene gas sensor, consisting of
Ag-loaded vertical ZnO nanorods, supported by a polyimide/ polytetrafluoroethylene (PI/PTFE)
substrate, using a hydrothermal-radio frequency (RF) magnetron sputtering method and showed
that its best sensing performance was at 200 ◦C [12]. As a two-dimensional nanomaterial, graphene
has attracted much attention since its discovery, because of its excellent characteristics, such as its
electrical, chemical and optical properties [24,25]. Graphene-based nanocomposites have been widely
used in membrane science and technology [26,27]. Uddin et al. synthesized a ZnO/reduced graphene
oxide (rGO) composite using a solvothermal method, which exhibited preferential detection of
acetylene gas with good selectivity, long-term stability, and fast response/recovery times at 250 ◦C [28].
The presented progresses suggest that noble metal doping and graphene addition techniques are
effective for lowering the operating temperature and improving the acetylene sensing performance of
MOS-based sensors.

In this work, we fabricated a low-temperature acetylene gas sensor based on a layer-by-layer,
self-assembled Ag–SnO2/rGO ternary nanocomposite film, for the first time. The as-prepared
nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron
microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum, which confirmed its successful
formation and rationality. The acetylene sensing properties were investigated under different working
temperatures and gas concentrations. An optimal temperature of 90 ◦C was determined, and the
Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene in terms
of response, repeatability, stability and response/recovery characteristics. The underlying sensing
mechanism of the Ag–SnO2/rGO sensor was further discussed.

2. Materials and Methods

2.1. Materials

The high-purity graphene oxide (GO) nanosheets (>99%) were supplied by Chengdu Organic
Chemicals Co. Ltd. (Chengdu, China). The GO used was graphene nanosheet, negatively decorated
with oxygen functional groups and carboxylic groups, which were located at the sheet surface. The GO
suspension was 0.25 wt % concentrated at pH 4.5. Tin chloride pentahydrate (SnCl4·5H2O) and
hydrazine hydrate were obtained from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).
Polyelectrolytes used for layer-by-layer (LbL) assembly were 1.5 wt % poly(diallyldimethylammonium
chloride) [PDDA (Sigma-Aldrich Co., Saint Louis, MO, USA), molecular weights (MW) of 200–350 K]
and 0.3 wt % poly(sodium 4-styrenesulfonate) [PSS (Sigma-Aldrich Co., Saint Louis, MO, USA), MW
of 70 K] with 0.5 M NaCl (West Long Chemical Co., Ltd., Guangdong, China) in both, to provide better
surface coverage. All reagents were used without further purification.
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2.2. Preparation of the Ag–SnO2/rGO Nanocomposite

Figure 1a illustrates the hydrothermal synthesis of SnO2. Firstly, 24 mg of SnCl4·5H2O was
dissolved in 30 mL of deionized water and stirred for 1 h. After that, the solution was hydrothermally
treated at 120 ◦C for 12 h, and then washed with deionized water and ethanol several times. The SnO2

aqueous solution was obtained after being ultrasonicated for 1 h and centrifugated for 15 min.
A substrate with interdigitated electrodes for resistive sensing and heating elements was fabricated.
The Ag–SnO2/rGO nanocomposite was deposited on the sensing electrodes using the layer-by-layer
(LbL) self-assembly technique, which is shown in Figure 1b. Two bi-layers of PDDA/PSS were firstly
self-assembled as the precursor layer, followed by alternative immersion into SnO2, GO, SnO2 and
Ag suspensions. The immersing time here used was 10 min for the polyelectrolytes and 15 min
for the SnO2, GO and Ag suspensions. Intermediate rinsing with deionized water and drying
with nitrogen gas were required after each monolayer assembly, to reinforce the interconnection
between the layers. The film was formed due to the interaction of electrostatic forces between
the positively and negatively charged nanoparticles. The first SnO2 layer (positively charged) was
designed for the intermediate bonding between PSS (negatively charged) and GO (negatively charged).
The Ag–SnO2/rGO nanocomposite sensor was obtained via the thermal reduction of GO into rGO at
220 ◦C for 5 h in an oven. Furthermore, the pure SnO2 and SnO2/rGO film sensor were fabricated to
allow a comparison between the drop-casting and LbL self-assembly methods, respectively.
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Figure 1. (a) Hydrothermal synthesis of SnO2 and (b) layer-by-layer self-assembly of the Ag–SnO2/GO
nanocomposite film.

2.3. Instruments and Analysis

Surface microscopy of the Ag–SnO2/rGO sample was carried out with a scanning electron
microscope (SEM, Hitachi S-4800, Tokyo, Japan). The X-ray diffraction (XRD) spectrum of the samples
was examined with an X-ray diffractometer (Rigaku D/Max 2500PC, Tokyo, Japan) using Cu Kα

radiation with a wavelength of 1.5418 Å. The lattice fringes of Ag–SnO2/rGO were inspected with
a transmission electron microscope (FEI Tecnai G2 F20, Shanghai, China). The nanostructural and
compositional features of the Ag–SnO2/rGO and SnO2/rGO samples were characterized by Raman
spectra (RamLab-010, Horiba Jobin Yvon, Paris, France).

A schematic of the experimental setup for acetylene sensing is shown in Figure 2. The acetylene
gas sensing properties were investigated by exposing the sensor to various concentrations of acetylene
gas, and the desired gas concentration was obtained by injecting the required quantity of acetylene
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into a sealed chamber using a syringe. The working temperature for the sensor was adjusted through
applying varying voltages to the heating electrodes with a power source (Gwinstek GPD-4303S,
New Taipei, Taiwan). The heater resistor (RH), heating voltage (VH), sensor resistance (RS) and
protection resistor (RL) made up the simplified circuit. The sensor resistance was recorded using a data
logger (Agilent 34970A, San Jose, CA, USA), connected to a computer via a recommended standard
(RS)-232 interface. The sensitivity of the sensor was defined as S = (R0 − Rg)/R0 × 100%, where R0 and
Rg were the sensor resistances in dry air and acetylene gas, respectively. The time taken by a sensor to
achieve 90% of the total resistance change was defined as the response or recovery time.
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3. Results and Discussion

3.1. Sample Characterization

Figure 3a shows the SEM image of the Ag–SnO2/rGO nanocomposite film. SnO2 microspheres
and Ag nanoparticles (NPs) attached to the surface of rGO sheets are clearly observed. Figure 3b
shows a high-resolution TEM image of the Ag–SnO2/rGO nanocomposite, and lattice fringe spacings
of 0.35, 0.33 and 0.23 nm for rGO, SnO2 and Ag, respectively, are measured. Figure 3c indicates the
XRD spectrum for the GO, rGO, SnO2 and Ag–SnO2/rGO nanocomposite films. Obvious peaks at 2θ

angles of 10.78◦ and 24.7◦ are observed for the GO and thermally treated rGO, respectively, which is in
agreement with previously published results, and further confirms the successful reduction of GO via
thermal treatment [29–31]. The XRD spectrum of SnO2 indicates several peaks at 26.41◦, 33.82◦, 37.60◦,
51.73◦ and 65.68◦, indexed to the (110), (101), (200), (211) and (301) planes of rutile SnO2, which is in
accordance with the data from JCPDS Card no. 41-1445 [32], and confirms the successful formation of
SnO2 nanocrystals. Apart from the characteristic peaks attributed to SnO2, the XRD spectrum of the
Ag–SnO2/rGO nanocomposite exhibited distinct peaks at 38.10◦, 44.37◦ and 64.17◦, which indexed to
the (111), (200) and (220) planes of Ag crystallines, respectively [33]. However, the broad peak of rGO is
not obvious in the XRD pattern of the Ag–SnO2/rGO nanocomposite, probably because the weak peak
of rGO is swamped by the high intensity peak of the SnO2 at the 2θ angle of 26.41◦ [34,35]. Figure 3d
shows the Raman spectrum of the SnO2/rGO and Ag–SnO2/rGO nanocomposites. The peaks located
at 633 cm−1 in the SnO2/rGO and Ag–SnO2/rGO nanocomposites are typical Raman peaks of SnO2.
The weak peaks located at 796 and 1588 cm−1 for the two samples are attributed to the Ag NPs.
The peaks located at 1363 and 1640 cm−1 are attributed to defects and disorder in the graphite layer.
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3.2. Acetylene Sensing Properties

Figure 4 shows the sensitivity of the Ag–SnO2/rGO nanocomposite sensor to 100 ppm acetylene
under operating temperatures of 25 to 170 ◦C. The sensor sensitivity increases and reaches its
highest value at 90 ◦C, and then decreases with any further increase in temperature. This can be
explained by the fact that the appropriate operating temperature improves sensor sensitivity, but
higher temperatures lower the binding energies of gas molecules and sensing film. An optimal
temperature of 90 ◦C was determined. Therefore, the operating temperature of 90 ◦C was selected for
the sensor in the following experiments.
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Figure 5 shows the sensitivity of pure SnO2, SnO2/rGO and Ag–SnO2/rGO film sensors to 50 ppm
acetylene at 90 ◦C. We found that the Ag–SnO2/rGO film sensor yielded the highest sensitivity among
the three sensors. Moreover, the Ag–SnO2/rGO film sensor showed a shorter response/recovery time
than the other two sensors. A response time and recovery time of 235 and 160 s, respectively, were
observed for the Ag–SnO2/rGO film sensor upon exposure to 50 ppm acetylene.
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Figure 6 shows the resistance measurements for the Ag–SnO2/rGO nanocomposite film sensor
upon exposure to acetylene gas, of cumulative concentrations, at 90 ◦C. The test was performed by
exposing the sensor to 5, 10, 50, 100, 150 and 500 ppm of acetylene. The resistance of the Ag–SnO2/rGO
nanocomposite sensor decreased with increasing concentrations of acetylene, indicating the n-type
semiconductor-like behavior of Ag–SnO2/rGO to acetylene (reducing gas). The inset of Figure 6 plots the
fitted function of sensor sensitivity (Y) and acetylene concentration (X) as Y = 32.09 − 25.42e−X/236.4.
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Figure 7 shows the repeatability of the Ag–SnO2/rGO film sensor with concentrations of
5, 150 and 500 ppm acetylene at 90 ◦C. There were no significant changes in sensor sensitivity
during the repeated exposure/recovery cycles, indicating an acceptable repeatability for acetylene
sensing. Figure 8 demonstrates the typical response and recovery curves of the Ag–SnO2/rGO
film sensor towards an acetylene pulse, at concentrations between 0 and 500 ppm, exhibiting good
response/recovery behavior.
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acetylene pulses between 0 and 500 ppm.

Figure 9 shows the response of the Ag–SnO2/rGO nanocomposite film sensor to concentrations
of 5, 150, and 500 ppm acetylene gas, measured every five days for over 30 days. It was clearly shown
that the sensor response does not vary significantly with time, confirming that the Ag–SnO2/rGO
nanocomposite film sensor has good long-term stability. Figure 10 shows the experimental current–voltage
(I–V) curves for the SnO2, SnO2/rGO and Ag–SnO2/rGO film devices, measured by applying voltages
from −4 to 4 V. It is clearly shown that the measurement results indicate good Ohmic contact to n-type
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semiconductors for the three devices. A larger current passes through the Ag–SnO2/rGO sensor
than that of the SnO2/rGO and SnO2 sensors. This is because the doping of Ag and rGO results in a
decrease in the resistance of the Ag–SnO2/rGO film. Table 1 presents the performance of the proposed
acetylene gas sensor in comparison with previous reported works [12,13,15,23,36–38]. The working
temperature and responses for the prepared sensor are comparable to metal oxide-based sensors made
by hydrothermal-RF magnetron sputtering, hydrothermal, electrospinning, spin-coating and sol-gel
methods. The presented Ag–SnO2/rGO film sensor exhibited a much higher response and a lower
working temperature than that of its MOS-based counterparts.
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Table 1. Performance of the presented sensor in this work compared with previous works.

Sensing Material Fabrication Method Work Temperature Response Reference

Ag–SnO2/rGO Layer-by-layer self-assembly 90 ◦C 15.8 @100 ppm This paper

Ag–ZnO nanorods Hydrothermal-radio frequency
(RF) magnetron sputtering 200 ◦C 27.2 @1000 ppm [12]

Ag-hierarchical ZnO Hydrothermal method 200 ◦C 1.92 @1000 ppm [13]
NiO/SnO2 Hydrothermal method 206 ◦C 13.8 @100 ppm [15]
PdO-SnO2 Hydrothermal method 350 ◦C 7.22 @100 ppm [23]

Ni-ZnO Electrospinning method 250 ◦C 17 @2000 ppm [36]
SnO2 Spin-coating method 300 ◦C 6.3 @10000 ppm [37]

Sm2O3/SnO2 Sol-gel method 180 ◦C 63.8 @1000 ppm [38]

3.3. Acetylene-Sensing Mechanism

The Ag–SnO2/rGO ternary nanocomposite film demonstrated excellent sensing properties towards
acetylene gas at low temperatures. Its sensitive mechanism can be attributed to the synergistic effect
of the ternary hybrids and the created potential barrier. Pristine SnO2 is an n-type semiconductor and
electrons are majority carriers. Graphene, as one of the emerging 2D nanomaterials, has a unique layered
structure, a large surface area-to-volume ratio and excellent electrical properties, which greatly facilitate
the absorption and diffusion of acetylene gas molecules. Figure 11 shows the sensing mechanism of the
Ag–SnO2/rGO nanocomposite film in air and acetylene gas. The oxygen molecules adsorbed on the
conduction band of n-type SnO2 are ionized to oxygen negative ions through the trapping of free
electrons from the surface of the SnO2 [39]. When the sensor is exposed to acetylene gas, the adsorbed
acetylene interacts with the oxygen’s negative ions and produces carbon dioxide, water molecules and
free electrons. The reaction is expressed as C2H2 (ads) + O− (ads)→ CO2 + H2O + e−, which leads to
a decrease in the sensor’s resistance [14,28].
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The formation of a heterojunction at the interface between rGO and SnO2 is beneficial, because it
enhances the acetylene-sensing properties. Figure 12a shows a schematic of an energy band diagram
of the SnO2/rGO heterojunction. The band-gaps for n-type SnO2 and p-type rGO are 3.6 and 0.4 eV,
respectively [34] and their work functions are 4.5 and 5.1 eV for SnO2 and rGO, respectively [40,41].
Because the Fermi energies are not at the same level and the rGO has a higher work function, when
SnO2 and rGO come into contact with each other, electrons transfer from SnO2 to rGO, and holes
flow in the opposite direction until a dynamic equilibrium state is reached, and thus a depletion
layer is formed at the interface [42]. Figure 12b shows the variation of depletion layer thickness
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for the SnO2/rGO heterojunction. When the sensor was exposed to acetylene gas, the interaction
between adsorbed O− and acetylene molecules released free electrons, with the released free electrons
increasing the n-type doping of SnO2. Higher SnO2 doping results in a reduced depletion layer in
SnO2, thereby decreasing the sensor resistance during acetylene gas exposure.
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The Ag NPs in the nanocomposite have a positive effect on electronic sensitization during gas
adsorption [43,44]. A potential barrier can be created at the contact interface between SnO2 and Ag,
which is beneficial to the enhancement of gas-sensing. Electrons transfer from SnO2 to Ag NPs and form
a highly-resistive “barrier layer” in air, and Ag NPs become centers for electron accumulation. When
the sensor is exposed to acetylene gas, electrons transfer from acetylene gas to the Ag NPs and then
to SnO2; the highly-resistive “barrier layer” is transformed into a highly-conductive “anti-barrier
layer”, which improves the electron mobility and sensing performance of the Ag–SnO2/rGO
nanocomposite sensor.

4. Conclusions

In this work, an acetylene gas sensor, based on Ag–SnO2/rGO nanocomposite film was
fabricated by layer-by-layer self-assembly technology. Successful preparation of the Ag–SnO2/rGO
nanocomposite was characterized and confirmed by means of SEM, TEM, XRD and Raman spectrum.
The Ag–SnO2/rGO nanocomposite sensor exhibited excellent sensing behaviors towards acetylene
in terms of response, repeatability, stability and response/recovery characteristics at an optimal
temperature of 90 ◦C, which are superior to pure SnO2 and SnO2/rGO film sensors. The underlying
sensing mechanism of the Ag–SnO2/rGO sensor was explored. This work provides guidance for an
acetylene sensor based on Ag–SnO2/rGO ternary nanocomposites.
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