Effect of Alkali Metal Atoms Doping on Structural and Nonlinear Optical Properties of Gold-Germanium Bimetallic Clusters: Focusing on the Design of Novel Optical Germanium-Based Materials

Xiaojun Li, Shuna Li, Hongjiang Ren, Juxiang Yang, Yongqiang Tang

The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi'an University, Xi'an 710065, Shaanxi, P. R. China

Clusters	Struct	Spin	$E_{\rm rel}^{1}$	$E_{\rm rel}^{2}$	Clusters	Struct	Spin	$E_{\rm rel}^{1}$	$E_{\rm rel}^{2}$	Clusters	Struct	Spin	$E_{\rm rel}^{1}$	$E_{\rm rel}^{2}$
Li@Ge ₂ Au	2A	1	0.00	0.00	Na@Ge ₂ Au	2A	1	0.00	0.00	K@Ge ₂ Au	2A	1	0.00	0.00
		3	1.12	1.23			3	0.98	1.03			3	1.05	1.43
Li@Ge ₃ Au	3A	1	0.00	0.00	Na@Ge ₃ Au	3A	1	0.00	0.00	K@Ge ₃ Au	3A	1	0.00	0.00
		3	0.63	1.24			3	0.94	1.16			3	0.82	1.01
Li@Ge ₄ Au	4A	1	0.00	0.00	Na@Ge ₄ Au	4A	1	0.00	0.00	K@Ge ₄ Au	4A	1	0.00	0.00
		3	0.35	0.39			3	0.42	0.40			3	0.36	0.33
Li@Ge5Au	5A	1	0.00	0.00	Na@Ge5Au	5A	1	0.00	0.00	K@Ge5Au	5A	1	0.00	0.00
		3	0.91	0.78			3	0.81	0.86			3	0.81	0.88
	5B	1	0.07	0.13		5B	1	0.15	0.16		5B	1	0.13	0.13
		3	0.73	1.03			3	0.98	1.05			3	0.94	1.03
Li@Ge ₆ Au	6A	1	0.00	0.00	Na@Ge ₆ Au	6A	1	0.00	0.00	K@Ge ₆ Au	6A	1	0.00	0.00
		3	0.88	1.03			3	0.86	1.00			3	0.90	1.02
	6B	1	0.16	0.22		6B	1	0.06	0.13		6B	1	0.09	0.15
		3	0.78	0.82			3	0.79	0.82			3	0.82	0.80
Li@Ge7Au Li@Ge8Au	7A	1	0.00	0.00	Na@Ge ₇ Au	7A	1	0.07	0.01	K@Ge ₇ Au K@Ge ₈ Au	7A	1	0.00	0.00
		3	0.25	0.27			3	0.35	0.30			3	0.29	0.09
	7B	1	0.03	0.12		7B	1	0.00	0.00		7B	1	0.03	0.09
		3	0.84	0.61			3	0.81	0.51			3	0.49	0.53
	8A	1	0.00	0.00	Na@Ge ₈ Au	8A	1	0.04	0.00		8A	1	0.02	0.00
		3	0.73	0.78			3	0.73	0.74			3	0.88	0.70
	8B	1	0.04	0.06		8B	1	0.00	0.02		8B	1	0.00	0.01

Table S1 Comparison of relative energies $(E_{rel}, eV)^a$ for the low-lying neutral AM@Ge_nAu (AM = Li, Na, and K; n = 2 - 13) clusters, calculated by using the hybrid DFT-B3LYP functionals.

		3	0.68	0.61			3	0.66	0.59			3	0.61	0.58
Li@Ge9Au	9A	1	0.00	0.00	Na@Ge9Au	9A	1	0.00	0.00	K@Ge9Au	9A	1	0.00	0.00
		3	0.92	1.01			3	0.79	0.94			3	0.73	0.90
	9B	1	0.04	0.06		9B	1	0.07	0.04		9B	1	0.08	0.06
		3	0.89	1.18			3	0.92	1.17			3	0.88	1.19
Li@Ge ₁₀ Au	10A	1	0.00	0.00	Na@Ge ₁₀ Au	10A	1	0.00	0.00	K@Ge ₁₀ Au	10A	1	0.00	0.00
		3	1.23	0.98			3	1.27	1.22			3	0.41	1.20
Li@Ge ₁₁ Au	11A	1	0.00	0.00	Na@Ge ₁₁ Au	11A	1	0.00	0.00	K@Ge ₁₁ Au	11A	1	0.00	0.00
		3	0.72	0.78			3	0.73	0.84			3	0.81	0.81
	11B	1	0.00	0.07		11B	1	0.03	0.09		11B	1	0.09	0.12
		3	0.77	0.80			3	0.80	0.89			3	0.85	0.85
Li@Ge ₁₂ Au	12A	1	0.00	0.01	Na@Ge ₁₂ Au	12A	1	0.00	0.00	K@Ge ₁₂ Au	12A	1	0.00	0.00
		3	0.67	0.79			3	0.63	0.64			3	0.69	0.78
	12B	1	0.04	0.00		12B	1	0.03	0.01		12B	1	0.08	0.10
		3	0.50	0.57			3	0.48	0.56			3	0.49	0.56
Li@Ge ₁₃ Au	13A	1	0.00	0.00	Na@Ge ₁₃ Au	13A	1	0.04	0.00	K@Ge ₁₃ Au	13A	1	0.00	0.00
		3	0.38	0.46			3	0.41	0.48			3	0.42	0.46
	13B	1	0.18	0.22		13B	1	0.00	0.03		13B	1	0.15	0.15
		3	0.71	0.79			3	0.70	0.81			3	0.56	0.59

^aThe E_{rel}^{-1} and E_{rel}^{-2} symbols represent the relative energies with the zero-point vibrational corrections, which were obtained by using two different basis sets (LanL2DZ(Ge,Au)/def-SVP(AM) and def-TZVP for all atoms), respectively.