Supplementary Nanomaterials: Biodegradable FeMnSi Sputter-Coated Macroporous Polypropylene Membranes for the Sustained Release of Drugs

Jordina Fornell 1, Jorge Soriano 2, Miguel Guerrero 1,* Juan de Dios Sirvent 1, Marta Ferran-Marqués 1, Elena Ibáñez 2, Leonardo Barrios 2, Maria Dolors Baró 1, Santiago Suriñach 1, Carme Nogués 2*, Jordi Sort 1,3,* and Eva Pellicer 1

Figure S1. X-ray diffraction patterns of Fe (black line) and Fe-14Mn-4Si (red line) sputtered on flat Si/Ti/Cu substrates. The first diffraction peak (*) belongs to the Cu substrate and the second one (+) to Fe (110) BCC Im$\bar{3}$m.
Figure S2. SEM images of (a) Fe- and (b) FeMnSi-coated PP membranes after incubation in HBSS for 15 days.

Figure S3. SKBR-3 cells observed under Differential Interference Contrast (DIC) microscopy and fluorescence microscopy after different times of incubation in the presence of Sample 1: (a,b) control cells, (c,d) cells incubated for 4 h, (e,f) cells incubated for 24 h. Scale Bar, 20 μm.
Figure S4. Fluorescence image of Sample 3 after the fluorimetric assay indicating total absence of Tf-A488.