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Abstract: Nanoporous electrodes have been fabricated by selectively dissolving the less noble α-Fe
crystalline phase from nanocrystalline Fe85.2B14–xPxCu0.8 alloys (x= 0, 2, 4 at.%). The preferential
dissolution is triggered by the weaker electrochemical stability of α-Fe nanocrystals than amorphous
phase. The final nanoporous structure is mainly composed of amorphous residual phase and
minor undissolved α-Fe crystals and can be predicted from initial microstructure of nanocrystalline
precursor alloys. The structural inheritance is proved by the similarity of the size and outlines
between nanopores formed after dealloying in 0.1 M H2SO4 and α-Fe nanocrystals precipitated after
annealing of amorphous Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) alloys. The Redox peak current density
of the nanoporous electrodes obtained from nanocrystalline Fe85.2B10P4Cu0.8 alloys is more than one
order higher than those of Fe plate electrode and its counterpart nanocrystalline alloys due to the
large surface area and nearly-amorphous nature of ligaments.

Keywords: nanoporous material; amorphous materials; nanocrystalline soft magnetic material;
corrosion; dealloying

1. Introduction

Dealloying, as a process of selective dissolution of less noble elements in alloys, has been
extensively used to prepare nanoporous (np) metals, including np Pt, np Pd, np Au, np Ag and
np Cu, in recent decades [1,2]. The large surface area of these nanoporous metals enhances their
catalytic performance, as well as their surface Raman scattering effect and their cost effectiveness [3–5].
The dealloying method has mainly been focused on binary or ternary alloys which consist of elements
with different electrode potentials. A difference of more than a few hundredth milli-volts in the
electrode potential is regarded as a prerequisite for motivating the selective dissolution of less noble
elements [6]. The dealloying strategy has been extended to the fabrication of porous metallic glasses via
the selective dissolution of less noble phase in two dual phase amorphous alloys: Y20Ti36Al24Co20 [7]
and La27.5Zr27.5Al25Cu10Ni10 [8]. While these porous metallic glasses with different architectures were
successfully fabricated using dealloying techniques, the fabrication technique results in a minimum
pore size restricted to the micro-scale. It should be noted that a much smaller pore size (e.g., <100 nm)
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is required in order to achieve the high specific surface area associated with enhanced performance.
In nanocrystalline alloys consisting of two phases, i.e., Ti50Cu50 [9], Ti59Al41 [10], Zr2Ni alloy [11],
Ni-based superalloys [12], the preferential dissolution behavior of less noble Ti2Cu, α2-Ti3Al,Zr and
γ′-Ni3Al is more pronounced than that of the γ-TiCu, γ-TiAl, Zr2Ni and γ-Ni phases during the
formation of the nanoporous structure. The final porous structure reflects the characteristics of the
initial microstructure of the crystalline precursor alloys [9,11,12]. The unique hetero-amorphous
microstructure of Fe-based nanocrystalline soft magnetic alloys is composed of α-Fe nanocrystals and a
surrounding amorphous phase, and provides excellent soft magnetic properties, such as low coercivity,
high saturated magnetic flux density, and low core loss, etc. [13–15]. The specific surface area of
the porous structure obtained from Cu powder embedded layered Cu47Ti33Zr11Ni8Si1 bulk metallic
glasses after leaching the Cu phase in HNO3 has been reported to be 23.5 m2/g [16]. The selective
dissolution of Cu powder embedded in Cu47Ti33Zr11Ni8Si1 bulk metallic glasses suggests that the
electrochemical stability of the crystalline Cu phase is weaker and that the amorphous phase remains
after dealloying. The dissolution behavior of α-Fe nanocrystals in the amorphous matrix of Fe-based
nanocrystalline alloys remains unclear although the coupling behavior of these alloys is similar to that
of Cu embedded metallic glass. Unlike the other alloys mentioned above, it is possible to fabricate
a nanoporous structure from heterogeneous Fe-based nanocrystalline alloys. It is worth noting that
the surface area of a porous structure is more or less constant when the pore size is above 1 µm and is
independent of the volume fraction of pores. Once the pore size is reduced to below 100 nm, the surface
area drastically increases and becomes sensitive to the volume fraction of the pores [16]. Since the
particle size of the nanocrystals in nanocrystalline Fe-based soft magnetic alloys has been reported
to be in the range of a few tenths of nanometers [13–15], the surface area of the nano-sized porous
architecture obtained from nanocrystalline precursor alloys is highly anticipated to be considerably
larger than that of dual phase metallic glass precursors.

Nanocrystalline Fe-based soft magnetic alloys (i.e., Fe83.3Si4B8P4Cu0.7, Fe85-86Si1-2B8P4Cu1 alloys)
have been developed last decade with saturated magnetic flux density of higher than 1.8 T and
coercivity of less than 10 A m−1 in comparison to amorphous Fe-Si-B ribbons and Fe-Si magnetic
steels [13–15]. The addition of P and Cu elements into Fe-Si-B alloys can effectively improve the soft
magnetic performance through increasing the nucleation density and suppressing the growth of the
α-Fe nanocrystals during the flash annealing [13,15,17,18]. Beside the corrosion properties and the glass
forming ability of Fe-Si-B alloys are enhanced by the addition of P element, the addition of P is helpful
to reduce the size of grains [19,20]. Therefore, the new serials of the Fe85.2B14−xPxCu0.8 alloys (x = 0, 2,
4 at.%) is designed to investigate the effect of P addition on the refinement of the α-Fe nanocrystals and
then the effect of the refined α-Fe nanocrystals on the characteristics of the final nanoporous structure.
As mentioned above, an alternative strategy for the formation of a porous structure with a characteristic
pore size of few tenths of nanometers is proposed in the present research. Nanoporous structure
with an ultra-large surface area, which is helpful to better the catalytic properties [21] and enhance
the reduction and oxidization reactions (Redox) in the metal-air battery systems [22], might obtain
after the selective dissolution of α-Fe nanocrystals in nanocrystallineFe85.2B14−xPxCu0.8 alloys (x = 0,
2, 4 at.%). For instance, the negative electrodes in an alkaline condition undergoes the oxidation and
reduction reaction during discharging and charging. Therefore, the efficiency of the Redox reaction is
able to be improved by introducing the nanoporous structure into Fe-air batteries [23,24].

Nanocrystalline Fe85.2B14−xPxCu0.8 alloys (x = 0, 2, 4 at.%) were immersed in 0.1 M H2SO4 solution
to fabricate the porous architecture. The main focus of this study was to determine the dependence of
the final nanoporous structure (pore size distribution and surface area) on the initial nanocrystalline
properties (alloy composition and microstructure) of Fe-based precursor alloys. These nanoporous
electrodes are expected to be mainly composed of the residual amorphous phases. Their properties of
reduction and oxidization reactions (Redox) in an alkaline condition is evaluated in comparison to
pure Fe bulk electrode.
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2. Materials and Experimental Procedure

Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) ribbons with a width of 10 mm and thickness of about 18 µm
were fabricated by the induction melting and single roller melt spinning technique. The details has
been illustrated in previous papers [13]. The linear velocity of the single-roller melt spinning was set
at 42 m s−1. Thermal property of as-spun alloys was evaluated with a differential scanning calorimeter
(DSC) at a heating rate of 40 K min−1 under an Ar gas flow. Heat treatment of as-spun alloys was
conducted at the onset crystallization temperature of three alloys for 600 s under an Ar flow. Crystalline
states were identified by using an X-ray diffractometor (XRD, Rigaku, SmartLab, Rigaku Co., Tokyo,
Japan) with a CuKα radiation. The scan speed was set at 1◦ min−1.

The potentiodynamic polarization curves were measured in 0.1 M H2SO4 solution with a scan rate
of 50 mV min−1. The dealloying was conducted in 0.1 M H2SO4 (AR, Sinopharm Chemical Reagent
Co., Ltd, Shanghai, China) solution for 7.2 ks. The cyclic voltammograms (CV) of nanocrystalline and
nanoporous Fe-B-P-Cu alloys were obtained in 6.0 M KOH (AR, Sinopharm Chemical Reagent Co.,
Ltd, Shanghai, China) solution with the scan rate was 50 mV s−1. All the potential was referred to the
Ag/AgCl (3.33 M KCl) electrode unless otherwise stated. The microstructure was characterized by a
scanning electron microscope (SEM, JEOL 4610, JEOL Ltd., Tokyo, Japan) and a transmission electron
microscope (TEM, JEOL, JEM-HC2100 and JEOL-ARM210F, JEOL Ltd., Tokyo, Japan), and the samples
for TEM observation were prepared by focused ion beam (FIB) method. The size of α-Fe grains and
nanopores was estimated by XRD analysis using Scherrer’s equation, SEM and TEM observation.
The average size of α-Fe nanocrystals and nanopores was estimated statistically over 125 particles
from more than three SEM and TEM images for each condition by using single chord length method
with Nanomeasure® software.

3. Results and Discussion

3.1. Structural Characteristics of Amorphous and Nanocrystalline Fe85.2B14−xPxCu0.8 Precursor Alloys

The XRD patterns of the as-spun Fe85.2B14−xPxCu0.8 (x = 0, 2, 4 at.%) alloys in Figure 1a consisted
of a single halo diffraction peak at 2Θ = 44◦, indicating that the as-spun ribbons were amorphous.
The onset crystallization temperatures, Tx1, and secondary crystallization temperatures, Tx2, of the
as-spun ribbons were confirmed to be 662 and 772 K for amorphous Fe85.2B14Cu0.8 alloy, 680 and
798 K for amorphous Fe85.2B12P2Cu0.8 alloy, 680 and 801 K for amorphous Fe85.2B10P4Cu0.8 alloy,
respectively. Tx1 and Tx2 increased with increasing P content. The increasing difference, ∆T = Tx2-Tx1,
in the crystallization temperatures with increasing P content indicates that the thermal stability of
precipitated phase became higher.

Three diffraction peaks at 2Θ of about 44◦, 65◦ and 82◦ in the XRD patterns of the annealed
alloys in Figure 1b are assigned to α-Fe (110), (200) and (220), indicating that the α-Fe phase was
precipitated after annealing. The particle sizes of α-Fe nanocrystals, D1, were calculated to be 32 nm for
annealed Fe85.2B14Cu0.8 ribbon, 28 nm for annealed Fe85.2B12P2Cu0.8 ribbon, and 25 nm for annealed
Fe85.2B10P4Cu0.8 ribbon, respectively, using the Scherrer equation (D = Kλ/βsinθ) [25]. As shown in
Figure 2a,b, two phases coexisted in the nanocrystalline Fe85.2B14Cu0.8 matrix: irregularly-shaped
nanocrystals and continuously distributed phase. As indicated by the selected nano-sized area
diffraction patterns (Figure 2c) at the regions which arrows marked in Figure 2b, the irregularly-shaped
nanocrystals were mainly composed of α-Fe and in a crystalline state. On the other hand, the
typical single halo diffraction ring in Figure 2d corresponding to the residual phase arrow marked
demonstrates that the structure of the continuous phase was amorphous [26]. The diffraction patterns
in Figure 2c,d are an evidence of the coexistence of the dual phases of α-Fe nanocrystals and
residual amorphous phase. The grain size of α-Fe nanocrystals, D2, was confirmed to be 31 nm
for annealed Fe85.2B14Cu0.8 ribbon, 25 nm for annealed Fe85.2B12P2Cu0.8 ribbon, and 18 nm for
annealed Fe85.2B10P4Cu0.8 ribbon by TEM analysis, respectively. Compared with those of as-annealed
Fe85.2B14Cu0.8 alloys, the grain size of as-annealed Fe85.2B10P4Cu0.8 alloy became slightly smaller
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because of the P alloying. As shown in Figure 2e,f, the shape of the α-Fe nanocrystals in the as-annealed
Fe85.2B10P4Cu0.8 ribbon was almost cubic. The selected area diffraction pattern (SADP) over a wider
area in Figure 2g, is typical for the α-Fe phase [13–15]. The high-resolution TEM image in Figure 2h
shows the characteristics of the nanocrystals and the interplanar spacing is 0.16 nm which is matched
with bcc α-Fe (111). These observations suggest that the particle size of α-Fe nanocrystals was reduced
by the addition of P to the Fe85.2B14Cu0.8 alloy. The elemental distribution profiles of Cu, Fe and P
elements analyzed by TEM-EDX elemental mapping are shown in Figure S1 (the Supplementary Files).
The P element distributes in the amorphous phase with a slightly higher concentration in comparison
to that in α-Fe nanocrystals. This fact is consistence with those in the published papers [13,15,17,18].
Furthermore, the high-resolution TEM image in Figure 3a shows the clear crystalline state of single
α-Fe nanocrystal indicating by the regular pattern in the middle region and amorphous nature of the
surrounding residue. The darker color of the crystal indicates that the weight element, mainly Fe,
enriches. The high angular dark field TEM image shows the similar distribution with an opposite color
in Figure 3b. The electron energy loss spectroscopy (EELS) analysis and the distribution profiles of B
element at the interface region between α-Fe nanocrystal and adjacent amorphous residue are shown
in Figure 3c,d. The dark region in the up-left corner indicates the lower distribution of B element of
about 2.5 at.% in the α-Fe nanocrystal.
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which the arrows marked in nanocrystalline Fe85.2B14Cu0.8 alloy. The selected area diffraction pattern
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angular dark field TEM image (b) of Fe85.2B10P4Cu0.8 alloy after annealing at 680 K for 600 s. EELS
image (c) and distribution of B element (d) at the interface of α-Fe grain and residual amorphous matrix.
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3.2. Structural Characteristics of Nanoporous Alloys

Figure 4 shows the anodic polarization behaviors of pure Fe, and amorphous and nanocrystalline
alloys in 0.1 M H2SO4 solution. The logarithm plot of Fe with a purity of 99.999 mass%, which was used
as a reference material, is also shown in Figure 4. The corrosion current, Icorr, and corrosion potential,
Ecorr, were determined by the Tafel slope method [27]. On basis of the Tafel analysis, the corrosion
potential (Ecorr) of pure iron plate are −0.5 V. The logarithm plots of the anodic polarization curves
in Figure 4a,b clearly demonstrate the different electrochemical behavior of the amorphous and
nanocrystalline alloys (I and I′: Fe85.2B14Cu0.8; II and II′: Fe85.2B12P2Cu0.8; III and III′: Fe85.2B10P4Cu0.8).
The values of Ecorr for nanocrystalline Fe85.2B14Cu0.8, Fe85.2B12P2Cu0.8 and Fe85.2B10P4Cu0.8 alloys
were confirmed to be −0.47 V, −0.37 V, and −0.37 V. Those of amorphous counterparts were −0.45 V,
−0.38 V and−0.37 V, respectively. The absence of passivation regions in the anodic polarization curves
indicates that all alloys were in an active dissolution state. As explained by Pickering in his work
on binary model alloys [28], the critical potential (Ec) can be determined by subjecting the alloys to
anodic polarization. The values of Ec for alloys tested in an active dissolution state are considered to
be close to their Ecorr in the present condition. Compared with pure Fe electrode, values of Ecorr for the
amorphous counterpart alloys are shifted to right and the amorphous and nanocrystalline counterpart
alloys have the better electrochemical stability than the α-Fe nanocrystals. A larger difference in Ecorr

was noted with higher P content. The Icorr of amorphous alloys was slightly smaller than that of
pure Fe. It should be noted that the chemical composition of the α-Fe nanocrystals was 96 at.% Fe,
1.5 at.% P and 2.5 at.% B in the case of the nanocrystalline Fe85.2B10P4Cu0.8 alloy. On the other hand,
the B and P content in the amorphous region adjacent to α-Fe nanocrystals was higher than that
in the α-Fe nanocrystals, as shown in Figure S1 (Supplementary file). Since the high content of Fe
in α-Fe nanocrystals (about 96 at.%), pure Fe plate is used to simulate the polarization behavior
of α-Fe nanocrystals. When pure Fe and these amorphous alloys are coupled, pure Fe serves as
anodes and these amorphous alloys function as cathodes. As a result, pure Fe undergoes the anodic
dissolution and galvanic dissolution is motivated by the difference in Ecorr. In the nanocrystalline
matrix, the α-Fe nanocrystals are considered to have the similar electrochemical behavior in 0.1 M
H2SO4 solution. The α-Fe nanocrystals with lower Ecorr serve as anodes and start the preferential
dissolution in the form of micro-coupling cells due to the difference in Ecorr between α-Fe nanocrystals
and surrounding amorphous phase. Galvanic corrosion thus occurs on α-Fe nanocrystals and might
lead to the formation of the pores.

Selective dissolution of as-annealed Fe-B-P-Cu alloys in 0.1 M H2SO4 solution for 7.2 ks under a
free corrosion condition causes the formation of the unique surface morphology in Figure 5. The porous
structure formed on the nanocrystalline Fe85.2B14Cu0.8 alloy is sponge-like in structure with relatively
large pores and narrow ligaments. A porous structure with a pore size of less than 100 nm was
obtained for all the nanocrystalline alloys. The pore size of these porous structures was confirmed
to be 25 nm for Fe85.2B14Cu0.8 alloy, 21 nm for Fe85.2B12P2Cu0.8 alloy and 16 nm for Fe85.2B10P4Cu0.8

alloy, respectively. Smaller nanopores were obtained in nanoporous structures from precursor alloys
with a higher P content. The TEM images in Figure 6a,b,d,e show the inner nanoporous structures
obtained from nanocrystalline Fe85.2B14Cu0.8 and Fe85.2B10P4Cu0.8. Although some irregularly-shaped
nanopores with sizes larger than 50 nm were formed, the average pore size was confirmed to be
19 nm. The nanoporous structure formed on nanocrystalline Fe85.2B10P4Cu0.8 alloy shown in Figure 6d
was more uniformly shaped and had an average pore size of 12 nm. A similar SADP for dealloyed
Fe85.2B14Cu0.8 alloy was obtained from the residual phase of dealloyed nanocrystalline Fe85.2B10P4Cu0.8.
The presence of the halo rings in the SADP of the residual phase in Figure 6c,f indicates that the residue
was mainly consisted of amorphous phase. With the exception of those from the amorphous residual
Fe-B-P-Cu phase, the diffraction rings can be attributed to minor crystalline undissolved α-Fe crystals
which can be detected in the black particles in Figure 6e. The XRD patterns of as-dealloyed alloys in
Figure 1c also demonstrates that the α-Fe nanocrystals are not fully dissolved after dealloying.
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3.3. Structural Inheritance of Nanoporousalloys

As demonstrated in Figures 5 and 6, the similarity of the shape and size between the α-Fe
nanocrystals and nanopores, the structural inheritance between the nanocrystalline precursor alloys
and nanoporous alloys can be outlined. The statistical data of grain size and pore size are presented
in Figure S2 (Supplementary file), and the larger divergences of the distribution of the grain size and
nanopore size of Fe85.2B14Cu0.8 alloys are considered to be due to the existence of the irregular α-Fe
nanocrystals. On the other hand, the structural inheritance between nanocrystalline precursor alloys
and nanoporous alloys can be reflected from the similarity of the size. The size comparison between
the α-Fe grains and nanopores is shown in Figure 7a. The grain sizes were reduced with the increase
of the P concentration of nanocrystalline Fe-B-P-Cu alloys, and the decrease of the nanopore size had
almost the same change tendency. The slope of the fitting lines of d1/D1 and d2/D2 is confirmed
to be 1 and 0.54, which indicates that the high reliability of the analysis method such as SEM can
predict the final nanoporous structure more accurately. Here the new prediction methodology for
the nanoporous structure of nanocrystalline Fe-based soft magnetic alloys can be proposed on the
basis of the present results. The literature value of structural characteristics of the nanocrystalline
precursor alloys can be used for the precise prediction of the final nanoporous structure. The present
finding can explain that the large nanopores in Figure 6b formed after the selective dissolution of
irregularly-shaped nanocrystals with a large size shown in Figure 2b. In fact, the unique nanoporous
microstructure formed as a result of the selective dissolution of α-Fe nanocrystals under the interaction
of micro-coupling cells between α-Fe nanocrystals and residual amorphous phases [29]. The difference
of Ecorr between Fe plate and the amorphous alloys in Figure 4 proves the selective dissolution of α-Fe
nanocrystals in H2SO4 solution. The nearly-amorphous nanoporous alloy can be fabricated by the
proposed method.
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3.4. Enhanced Redox Performance of Nanocrystalline and Nanoporousalloys

The Redox performance of nanocrystalline and nanoporous Fe-based alloys in 6.0 M KOH
solution at room temperature is shown in Figure 8. The CV of Fe electrode in Figure 8c shows three
current peaks at −1.09 V, −0.71 V and −0.50 V in the anodic scan and two peaks at −1.10 V and
−1.23 V in the cathodic scan. As has been reported, the anodic peaks at −0.70 V and cathodic peak
at −1.10 V correspond to the formation of FeOOH and the reduction of Fe2+ [30–32]. The CV curves
of Fe85.2B14Cu0.8 and Fe85.2B12P2Cu0.8 precursors present small oxidization and reduction peaks in
Figure 8a. The peak current density of nanocrystalline Fe85.2B10P4Cu0.8 precursor at −0.63 V was
about 12 mA cm−2, about 4 times higher than those of pure Fe, Fe85.2B14Cu0.8 and Fe85.2B12P2Cu0.8

precursors. This might be due to the higher distribution of smaller α-Fe nanocrystals in the reaction
surface of Fe85.2B10P4Cu0.8 precursor. The shape of the CV curves of nanoporous electrodes was
inconsistent with the nanocrystalline alloys in Figure 8a. Those obtained from electrodes dealloyed
from Fe-B-P-Cu precursors with a higher P concentration have the higher Redox peak current density
in Figure 8b. The nanoporous electrode obtained from the Fe85.2B14Cu0.8 precursor consisted of single
anodic current peaks at −0.72 V and one cathodic current peak at −1.15 V. The current density of the
broad anodic peaks centering at −0.63 V for dealloyed Fe85.2B10P4Cu0.8 and −0.69 V for dealloyed
Fe85.2B12P2Cu0.8 precursors was about 46 and 37 times higher than that of the flat Fe electrode, which
indicates that the catalytic performance of the nanoporous electrode was superior in Redox properties.
The enhanced Redox performance of the nanoporous electrodes in Figure 9 is reflected by the ratio
of Ip-Np/Ip-Fe and Ip-Nc/Ip-Fe (the peak current densities of nanoporous, nanocrystalline electrodes
after normalized by the peak current density of pure Fe electrodes at the corresponding potential).
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The ratio of nanoporous electrodes is higher than 10, and becomes larger with the increase of the P
concentration. The enhancement of the Redox reactions on the nanocrystalline alloys is much weaker
mainly because of the small active area of the nonporous alloys. In a word, the Redox performance is
enhanced more than one order after the introduction of the nanoporous structure.
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Figure 8. CV curves of nanocrystalline (a) nanoporous; (b) electrodes and pure Fe plate; (c) in 6.0 M
KOH solution. Scan rate: 50 mV/s. Nanocrystalline electrodes: Fe85.2B14Cu0.8 (I′), Fe85.2B12P2Cu0.8

(II′) and Fe85.2B10P4Cu0.8 (III′) alloys after annealing of amorphous precursor alloys. Nanoporous
electrodes: Fe85.2B14Cu0.8 (I′ ′), Fe85.2B12P2Cu0.8 (II′ ′) and Fe85.2B10P4Cu0.8 (III′ ′) alloys after dealloying
of nanocrystalline precursor alloys in 0.1 M H2SO4 solution for 7.2 ks.
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3.5. Discussion

As described above, the microstructure of amorphous alloys after flash annealing consisted of
two phases: α-Fe nanocrystals and residual amorphous phase. As indicated by the polarization curves
in Figure 4, the α-Fe nanocrystals acted as anodes and the adjacent amorphous region functioned
as a cathode. The micro-coupling effect between α-Fe nanocrystals and the adjacent amorphous
phases triggers the preferential dissolution of α-Fe nanocrystals [29]. The continuous distribution
of the residual amorphous phase makes it possible to form the bi-continuous pore-and-ligament
structure after preferential dissolution of α-Fe nanocrystals. This is the first trial to fabricate the
nearly-amorphous nanoporous materials by dealloying the nanocrystalline precursor alloys. Moreover,
the structural inheritance is determined by the unique dissolution mechanism of the nanocrystalline
alloys. The formation process of the nanopores only includes two steps: the dissolution of α-Fe
nanocrystals and the penetration of the dissolution front in the amorphous residue. This process has
no rearrangement of noble adatoms, which differs from the typical dealloying process [2,6,32].

The enhanced Redox performance of the nanoporous electrodes is considered to be due to the
large surface area and the nature of the nearly-amorphous ligaments. It is no doubt that the large
surface area of the nanoporous materials certainly improves the electrochemical reactions [3,5,32].
The nanoporous electrodes mainly composed of amorphous residual phase have a Redox peak current
density more than one order higher than those of pure iron and nanocrystalline electrodes in alkaline
condition (Figures 8 and 9). Wang [33] reported that higher energy state of amorphous structure
endowed the electrons of surface atoms with lower activation energy to transfer. The surface of
amorphous alloy has more unsaturated coordination, which can provide more active sites for chemical
reactions. With theoretical calculations, Hu [34] pointed out that the bonding mechanism of atoms
in amorphous structure was different from the case in crystalline structure. The excellent catalytic
activity of amorphous electrodes resulted from the abundance of the active sites induced by the special
electronic structure. Therefore, the nanoporous electrodes mainly composed of amorphous residual
phase demonstrated much better Redox performance than pure Fe and nanocrystalline electrodes.
This strategy can be extended to other nanocrystalline alloys with two or more phases with different
electrochemical stabilities for the fabrication of porous materials.
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4. Conclusions

A nanoporous Fe-based nearly-amorphous material with uniformly distributed nanoscale porosity
was fabricated on nanocrystalline precursor alloys. The nanopores formed at the sites where α-Fe
nanocrystals distributed and the nanopores were similar in size to the particle size of α-Fe nanocrystals.
The nanoporous structure inherits the characteristics of the nanocrystalline precursor alloys. It is
possible to predict the final nanoporosity of the nanoporous nearly-amorphous materials from the
microstructure of the nanocrystalline precursor alloys. The microstructure of the nanocrystalline alloys
became more uniform and the α-Fe nanocrystals became smaller with increasing P content. With these
findings in mind, it is easy to envision the refinement of nanoporous structures on other P containing
precursor alloys. The peak current density of nanoporous electrodes mainly composed of amorphous
phases are more than one order higher than flat Fe and nanocrystalline electrodes due to their large
surface areas and the nearly-amorphous nature of the ligaments.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/6/141/s1.
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