Next Article in Journal
Functionalizing Graphene Oxide with Alkylamine by Gamma-ray Irradiation Method
Previous Article in Journal
Parameters for Fabricating Nano-Au Colloids through the Electric Spark Discharge Method with Micro-Electrical Discharge Machining
Article Menu
Issue 6 (June) cover image

Export Article

Open AccessArticle
Nanomaterials 2017, 7(6), 134; doi:10.3390/nano7060134

Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA)

1
Guizhou Provincial Key Laboratory for Information Systems of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang 550001, China
2
Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
*
Author to whom correspondence should be addressed.
Academic Editors: Mo Song and Thomas Nann
Received: 19 March 2017 / Revised: 23 May 2017 / Accepted: 30 May 2017 / Published: 3 June 2017
View Full-Text   |   Download PDF [4236 KB, uploaded 3 June 2017]   |  

Abstract

Rhodamine B (Rh B) is a toxic dye that is harmful to the environment, humans, and animals, and thus the discharge of Rh B wastewater has become a critical concern. In the present study, reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) was used to treat Rh B aqueous solutions. The nZVI/rGO composites were synthesized with the chemical deposition method and were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, N2-sorption, and X-ray photoelectron spectroscopy (XPS) analysis. The effects of several important parameters (initial pH, initial concentration, temperature, and contact time) on the removal of Rh B by nZVI/rGO were optimized by response surface methodology (RSM) and artificial neural network hybridized with genetic algorithm (ANN-GA). The results suggest that the ANN-GA model was more accurate than the RSM model. The predicted optimum value of Rh B removal efficiency (90.0%) was determined using the ANN-GA model, which was compatible with the experimental value (86.4%). Moreover, the Langmuir, Freundlich, and Temkin isotherm equations were applied to fit the adsorption equilibrium data, and the Freundlich isotherm was the most suitable model for describing the process for sorption of Rh B onto the nZVI/rGO composites. The maximum adsorption capacity based on the Langmuir isotherm was 87.72 mg/g. The removal process of Rh B could be completed within 20 min, which was well described by the pseudo-second order kinetic model. View Full-Text
Keywords: rhodamine B; nanoscale zero-valent iron; graphene; RSM; ANN-GA; adsorption isotherm and kinetics rhodamine B; nanoscale zero-valent iron; graphene; RSM; ANN-GA; adsorption isotherm and kinetics
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

Supplementary material

Scifeed alert for new publications

Never miss any articles matching your research from any publisher
  • Get alerts for new papers matching your research
  • Find out the new papers from selected authors
  • Updated daily for 49'000+ journals and 6000+ publishers
  • Define your Scifeed now

SciFeed Share & Cite This Article

MDPI and ACS Style

Shi, X.; Ruan, W.; Hu, J.; Fan, M.; Cao, R.; Wei, X. Optimizing the Removal of Rhodamine B in Aqueous Solutions by Reduced Graphene Oxide-Supported Nanoscale Zerovalent Iron (nZVI/rGO) Using an Artificial Neural Network-Genetic Algorithm (ANN-GA). Nanomaterials 2017, 7, 134.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Nanomaterials EISSN 2079-4991 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top