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Abstract: The SnO2/g-C3N4 composites were synthesized via a facile calcination method by using
SnCl4·5H2O and urea as the precursor. The structure and morphology of the as-synthesized
composites were characterized by the techniques of X-ray diffraction (XRD), the field-emission
scanning electron microscopy and transmission electron microscopy (SEM and TEM), energy
dispersive spectrometry (EDS), thermal gravity and differential thermal analysis (TG-DTA),
and N2-sorption. The analysis results indicated that the as-synthesized samples possess the two
dimensional structure. Additionally, the SnO2 nanoparticles were highly dispersed on the surface
of the g-C3N4nanosheets. The gas-sensing performance of the as-synthesized composites for
different gases was tested. Moreover, the composite with 7 wt % g-C3N4 content (SnO2/g-C3N4-7)
SnO2/g-C3N4-7 exhibits an admirable gas-sensing property to ethanol, which possesses a higher
response and better selectivity than that of the pure SnO2-based sensor. The high surface area of the
SnO2/g-C3N4 composite and the good electronic characteristics of the two dimensional graphitic
carbon nitride are in favor of the elevated gas-sensing property.

Keywords: graphitic carbon nitride; SnO2; calcination method; SnO2/g-C3N4 composite; ethanol
gas sensing

1. Introduction

In recent years, poisonous and harmful gases of industrial production have frequently leaked.
Meanwhile, organic poisonous gases, such as methylbenzene and formaldehyde, volatilize from furniture
and newly-decorated houses. As a result, it severely threatens the health of mankind [1–4]. Therefore,
there is the need for an effective and necessary method for detecting the vaporable substances. In the
past several years, considerable attentions have been dedicated to metal-oxide semiconductor (MOS)
material-based gas sensors. Various metal-oxide semiconductors (MOS), such as SnO2 [5], ZnO [6],
CuO [7], α-Fe2O3 [8], Co3O4 [9], MnO2 [10], WO3 [11], In2O3 [12], and NiO [13], are widely used as gas
sensors. These gas sensors exhibited unique performances, including a low-cost, small size, and fast
response and recovery time. SnO2, a typical n-type metal-oxide semiconductor with a rutile crystalline
structure, is widely used to detect different kinds of gases such as ethanol [14], formaldehyde [15],
acetone [16], nitrogen dioxide [17], etc. These are all due to their remarkable characteristics such as
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their good chemical and physical stability, non-pollution property, low-energy feature, use of simple
preparation, and so on.

The most remarkable characteristic of SnO2 is that the resistance varies when it is exposed to
different types of target gases. As a rule, the resistance value of SnO2 decreases when it is exposed
in reducing gases, and conversely, it increases under the oxidizing gases. As we all know, there are
many oxygen vacancies of SnO2 which are in favor of the process of gas adsorption. In general,
it has a better gas-sensing performance with a higher concentration of oxygen vacancies. Nonetheless,
there are some significant defects which restricts its application in gas sensors. For instance, a high
working temperature, long response and recovery time, high resistance, and easy agglomeration
draw the attention of researchers. In order to overcome these shortcomings, it is necessary to explore
an electroconductive intermediate to support SnO2 nanoparticles, in order to improve the electrical
conductivity and dispersity. Therefore, many two-dimensional (2D) carbon materials are widely
used as intermediates [18–20]. Graphene, a unilaminar sp2-hybridized carbon atoms configuration,
exhibits an excellent performance, including a large specific surface area, better electronic conductivity,
and superior stability. On account of these advantages, graphene and reduced graphene oxide
are widely used as gas-sensing materials to detect different kinds of gases. Different metal-oxide
decorated graphene nanocomposite gas sensors were reported and exhibited outstanding gas-sensing
performances [21–24]. However, the process of preparing GO and r-GO is complicated and high-cost.
Hence, it is necessary to explore a novel 2D structure material with graphene.

Recently, graphitic carbon nitride (g-C3N4) has attracted increasing attention due to its high
photology and chemical stability, facile preparation, high specific surface area, and nontoxicity [25–28].
In general, g-C3N4 is readily synthesized by calcining abundant nitrogen-rich precursors such as
melamine, dicyandiamide, and urea. It has been widely used in fields such as photocatalysis, degradation,
and energy storage materials [29–31]. Until now, there are few reports on the application of g-C3N4 in the
field of sensors. Zeng et al. have successfully prepared the α-Fe2O3/g-C3N4 nanocomposite through a
facile refluxing method for the cataluminescence sensing of H2S [32]. Zhang et al. have developed a novel
fluorescence sensor based on a g-C3N4/MnO2 sandwich nanocomposite for the rapid and selective
sensing of glutathione [33]. Moreover, CeO2/g-C3N4 composites with high photocatalytic activity
have been synthesized successfully [34]. To the best of the authors’ knowledge, SnO2/g-C3N4-based
sensors have yet not been reported in the literature.

In this work, we report a facile calcination approach to synthesize different mass ratios of
SnO2/g-C3N4 composites for ethanol sensing. The gas-sensing properties, including the selectivity,
stability, and sensitivity, of SnO2/g-C3N4 to ethanol, were investigated. As a result, the SnO2/g-C3N4

composite-based sensor exhibited a higher response value and better selectivity to ethanol than that of
the pure SnO2 nanoparticle-based sensor. The mechanism of the as-prepared sample gas-sensing to
ethanol was discussed, in detail.

2. Results and Discussion

2.1. Sample Characterization

Figure 1 shows the XRD patterns of the as-prepared pure SnO2 particles and SnO2/g-C3N4

composites. As demonstrated by the curves, five distinct diffraction peaks around 26.6◦, 33.8◦, 37.9◦,
51.7◦, and 65.9◦ can be seen, which correspond to (110), (101), (200), (211), and (301) planes of the
tetragonal rutile structure SnO2 (JCPDS Card No. 41-1445), respectively. However, the diffraction
peaks of g-C3N4 in the SnO2/g-C3N4 composites are not observed in the curves. This may be due to
the relatively small content of g-C3N4 in the composites. Another reason is that the peak around 27.5◦

of g-C3N4 is overlapped by the peak around 26.6◦ of SnO2.
The SEM images of the g-C3N4, SnO2, and SnO2/g-C3N4-7 composites are displayed in Figure 2.

Figure 2a displays the SEM image of the g-C3N4 sample. We can see many wrinkles on the edge
of the thin layers, which represents the nanosheet structure. Figure 2b shows many SnO2 particles
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agglomerated together with different sizes. This phenomenon indicates that pure SnO2 particles
are easy to agglomerate, which is harmful to the process of gas adsorption. As shown in Figure 2c,
many nanoparticles are attached to the g-C3N4 nanosheet. This could be beneficial to improving
the gas-sensing properties. Figure 2d illustrates the typical EDS mappings of the SnO2/g-C3N4-7
composite recorded from the surface area that is observed in Figure 2c, in which four elements of C,
N, Sn, and O are concurrently existent. It can be concluded that SnO2 and g-C3N4 are coexistent in
the composite.
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Figure 3 shows the TEM images of g-C3N4 and the SnO2/g-C3N4-7 composite. We can clearly see
from Figure 3a that there are a lot of folds which seem like floccules, clearly demonstrating the existence
of the g-C3N4 nanosheet. The lines represent the stacked rolled edges of the nanosheet structure.
As seen from Figure 3b, the SnO2 particles are highly dispersed on the surface of the g-C3N4 nanosheet.
This overcame the disadvantage of an easy agglomeration of SnO2 particles and further enhanced the
specific surface area. Therefore, this test identifies it as an excellent candidate for gas-sensing materials.
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Figure 3. TEM images of (a) g-C3N4 and (b) SnO2/g-C3N4-7 composite.

TG-DTA was carried out to reveal the weight change situation of g-C3N4 and SnO2/g-C3N4-7.
The temperature range is from room temperature to 700 °C, and the heating rate is 10 °C·min−1. As
is shown in Figure4, the red and blue lines stand for weight and heat flow curves, respectively. The
first agravity peak is between 100 °C and 300 °C, which is due to the desorption of moisture and the
solvent. The second agravity peak is between 400 °C and 600 °C, which is due to the combustion of
g-C3N4 in air. The inset in Figure 4 is the TG-DTA profiles of SnO2/g-C3N4-7. The agravic peak below
400 °C is due to the desorption of solvent, and the remanent content of the composite is 92% after
the combustion of g-C3N4. This result demonstrated that g-C3N4 was not decomposed at the
optimum temperature of 300 °C in the process of testing the gas-sensing properties.

Figure 4. TG-DTA profiles of the g-C3N4 and SnO2/g-C3N4-7 composite.

Figure 5 depicts the N2 adsorption-desorption isotherms and the corresponding pore size
distribution of the as-prepared SnO2 and SnO2/g-C3N4-7 samples. It can be seen from Figure 5a that
the isotherms of the two samples show type IV, which are the typical characteristics of mesoporous
materials according to the IUPAC. The well-defined hysteresis loop belonging to the H3-type clearly
indicates the existence of an aggregation of the laminated structure with a narrow slit formed by the
g-C3N4 and SnO2 nanoparticles. Figure 5b displays the corresponding pore size distribution of the
two samples. It can be clearly seen that the pore diameter of SnO2 and SnO2/g-C3N4 are relatively
small and that the majority concentrate upon 4.54 nm and 3.79 nm, respectively, according to the
DFT method. The BET calculated results show that the specific surface area of the SnO2 and
SnO2/g-C3N4-7 samples are 94.3 m2·g−1 and 132.5 m2·g−1, respectively. The specific surface area of the
as-prepared composite has been significantly improved, which could be in favor of enhancing the
gas-sensing properties.

Figure 3. TEM images of (a) g-C3N4 and (b) SnO2/g-C3N4-7 composite.

TG-DTA was carried out to reveal the weight change situation of g-C3N4 and SnO2/g-C3N4-7.
The temperature range is from room temperature to 700 ◦C, and the heating rate is 10 ◦C·min−1. As is
shown in Figure 4, the red and blue lines correspond to weight and heat flow curves, respectively.
The first agravity peak is between 100 ◦C and 300 ◦C, which is due to the desorption of moisture and
the solvent. The second agravity peak is between 400◦C and 600◦C, which is due to the combustion of
g-C3N4 in air. The inset in Figure 4 is the TG-DTA profiles of SnO2/g-C3N4-7. The agravic peak below
400◦C is due to the desorption of solvent, and the remanent content of the composite is 92% after the
combustion of g-C3N4. This result demonstrated that g-C3N4 was not decomposed at the optimum
temperature of 300◦C in the process of testing the gas-sensing properties.
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Figure 5 depicts the N2 adsorption-desorption isotherms and the corresponding pore size
distribution of the as-prepared SnO2 and SnO2/g-C3N4-7 samples. It can be seen from Figure 5a that
the isotherms of the two samples show type IV, which are the typical characteristics of mesoporous
materials according to the IUPAC. The well-defined hysteresis loop belonging to the H3-type clearly
indicates the existence of an aggregation of the laminated structure with a narrow slit formed by the
g-C3N4 and SnO2 nanoparticles. Figure 5b displays the corresponding pore size distribution of the two
samples. It can be clearly seen that the pore diameter of SnO2 and SnO2/g-C3N4 are relatively small
and that the majority concentrate upon 4.54 nm and 3.79 nm, respectively, according to the DFT method.
The BET calculated results show that the specific surface area of the SnO2 and SnO2/g-C3N4-7 samples
are 94.3 m2·g−1 and 132.5 m2·g−1, respectively. The specific surface area of the as-prepared composite
has been significantly improved, which could be in favor of enhancing the gas-sensing properties.

Nanomaterials2017, 7, x FOR PEER REVIEW    5 of 13 

 

the isotherms of the two samples show type IV, which are the typical characteristics of mesoporous 

materials according to the IUPAC. The well‐defined hysteresis loop belonging to the H3‐type clearly 

indicates the existence of an aggregation of the laminated structure with a narrow slit formed by the 

g‐C3N4 and SnO2 nanoparticles. Figure  5b displays  the corresponding pore size distribution of  the 

two samples. It can be clearly seen that the pore diameter of SnO2 and SnO2/g‐C3N4 are relatively 

small and  that  the majority concentrate upon 4.54 nm and 3.79 nm, respectively, according  to  the 

DFT method.  The  BET  calculated  results  show  that  the  specific  surface  area  of  the  SnO2  and 

SnO2/g‐C3N4‐7 samples are 94.3 m2∙g−1 and 132.5 m2∙g−1, respectively. The specific surface area of the 

as‐prepared composite has been significantly improved, which could be in favor of enhancing the 

gas‐sensing properties. 

(a)  (b)

Figure 5.  (a) N2 adsorption‐desorption  isotherms and  (b)  the corresponding pore size distribution 

curves of the SnO2 and SnO2/g‐C3N4‐7 composite. 

2.2. Gas‐Sensing Performance 

The gas‐sensing properties of the as‐prepared samples in relation ethanol were investigated, in 

detail. Figure 6a shows the response values of pure SnO2 and SnO2/g‐C3N4‐based sensors to 500 ppm 

ethanol at different operating temperatures. It can be clearly observed from the line chart of the three 

SnO2/g‐C3N4  samples  that  the  response  values  increase  with  the  increase  of  the  operating 

temperature under 300 °C. However, the response values decrease when the temperature is above 

300 °C. The maximum response of SnO2/g‐C3N4‐7 is 360 at 300 °C. In stark contrast, the maximum 

response of the pure SnO2 is only 95 at 320°C. This phenomenon can be explained by the fact that the 

SnO2/g‐C3N4‐7‐based sensor can tend to the balance between the speeds of chemical adsorption and 

desorption at a lower temperature, and reach a higher response than that of the pure SnO2 sensor. 

This  result  indicates  that  the  SnO2/g‐C3N4‐based  sensor  has  a  great  influence  and  enhances  the 

gas‐sensing properties for ethanol. It reaches the maximum response when the mass percentage of 

g‐C3N4 in the composites is 7%. The specific surface area of the SnO2, SnO2/g‐C3N4‐5, SnO2/g‐C3N4‐7, 

and SnO2/g‐C3N4‐9 composites is 94.3 m2∙g−1, 113.8 m2∙g−1, 132.5 m2∙g−1, and 122.2 m2∙g−1, respectively. 

When the g‐C3N4 content in the composites exceeds a certain value (e.g., 7 wt % in this work), it may 

form the connection of bulk. As a result, the specific surface area of the composite will decrease and 

there will be a reduced number of active sites for the adsorption of oxygen and ethanol gas, leading 

to the degradation of gas‐sensing properties. Consequently, the gas sensor performance increases at 

first  and  decreases when  the  g‐C3N4  content  in  the  composites  increases. A  suitable  amount  of 

g‐C3N4 in  the composite  is beneficial  to  the dispersity, and a preferable heterojunctional structure 

can be  formed  in  the  interface  region between 2D g‐C3N4 and SnO2. A high content of 2D g‐C3N4 

may  lead  to  the connection of  the g‐C3N4 nanosheets, which could  form micro electric bridges on 

the surface. The micro electric bridges may result in the semiconductor’s resistance being reduced, 

causing a  reduction  in  the gas  sensor performance. Figure 6b displays the response values of the 

four samples at 300 °C to different concentrations of ethanol. As shown in the line chart, the response 

Figure 5. (a) N2 adsorption-desorption isotherms and (b) the corresponding pore size distribution
curves of the SnO2 and SnO2/g-C3N4-7 composite.

2.2. Gas-Sensing Performance

The gas-sensing properties of the as-prepared samples in relation ethanol were investigated,
in detail. Figure 6a shows the response values of pure SnO2 and SnO2/g-C3N4-based sensors to
500 ppm ethanol at different operating temperatures. It can be clearly observed from the line chart of
the three SnO2/g-C3N4 samples that the response values increase with the increase of the operating
temperature under 300 ◦C. However, the response values decrease when the temperature is above
300 ◦C. The maximum response of SnO2/g-C3N4-7 is 360 at 300 ◦C. In stark contrast, the maximum
response of the pure SnO2 is only 95 at 320◦C. This phenomenon can be explained by the fact that the
SnO2/g-C3N4-7-based sensor can tend to the balance between the speeds of chemical adsorption and
desorption at a lower temperature, and reach a higher response than that of the pure SnO2 sensor. This
result indicates that the SnO2/g-C3N4-based sensor has a great influence and enhances the gas-sensing
properties for ethanol. It reaches the maximum response when the mass percentage of g-C3N4

in the composites is 7%. The specific surface area of the SnO2, SnO2/g-C3N4-5, SnO2/g-C3N4-7,
and SnO2/g-C3N4-9 composites is 94.3 m2·g−1, 113.8 m2·g−1, 132.5 m2·g−1, and 122.2 m2·g−1,
respectively. When the g-C3N4 content in the composites exceeds a certain value (e.g., 7 wt % in
this work), it may form the connection of bulk. As a result, the specific surface area of the composite
will decrease and there will be a reduced number of active sites for the adsorption of oxygen and ethanol
gas, leading to the degradation of gas-sensing properties. Consequently, the gas sensor performance
increases at first and decreases when the g-C3N4 content in the composites increases. A suitable
amount of g-C3N4 in the composite is beneficial to the dispersity, and a preferable heterojunctional
structure can be formed in the interface region between 2D g-C3N4 and SnO2. A high content of 2D
g-C3N4 may lead to the connection of the g-C3N4 nanosheets, which could form micro electric bridges
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on the surface. The micro electric bridges may result in the semiconductor’s resistance being reduced,
causing a reduction in the gas sensor performance. Figure 6b displays the response values of the four
samples at 300 ◦C to different concentrations of ethanol. As shown in the line chart, the response
values increase with the increasing ethanol concentrations. The slope of the curves increases rapidly
when the concentration range of ethanol is from 50 ppm to 500 ppm. However, it increases slowly
gradually with an increasing concentration in the range of 500–3000 ppm. Furthermore, the responses
of the SnO2/g-C3N4 sensors are much higher than that of pure SnO2. It can be concluded that the
adsorption of ethanol has approached the saturation value when the concentration reaches 3000 ppm.
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Figure 7 displays the real time successive response-recover curves of the pure SnO2 and
SnO2/g-C3N4-7 to 500 ppm ethanol in the range of 50–3000 ppm at 300 ◦C. As shown by the curves,
the response values of both sensors increase with the increasing concentration. The response value
of the SnO2/g-C3N4-7-based sensor is much higher than that of the pure SnO2-based sensor to the
same concentration of ethanol. The gas-sensing properties of the composites enhanced a lot, which is
consistent with the expected.
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50–3000 ppm.

The repeatability and stability are both crucial criteria to measure the gas-sensing properties.
Figure 8a reveals the repeatability of the SnO2/g-C3N4-7 sensor to 500 ppm ethanol at 300 °C. As
shown by the curves, the response values of the four response-recovery cycles are almost
maintained at about 360. It can be concluded that the composite sensor has an admirable
repeatability for ethanol gas sensing. A durable response value was measured to explore the
stability of the SnO2/g-C3N4-7 sensor. Figure 8b displays the test result every five days, and the
response values to 500 ppm ethanol at 300 °C are maintained at around 360. Therefore, we may

Figure 7. Real time response curves of the pure SnO2 and SnO2/g-C3N4-7 to ethanol in the range of
50–3000 ppm.



Nanomaterials 2017, 7, 98 7 of 13

The repeatability and stability are both crucial criteria to measure the gas-sensing properties.
Figure 8a reveals the repeatability of the SnO2/g-C3N4-7 sensor to 500 ppm ethanol at 300 ◦C. As shown
by the curves, the response values of the four response-recovery cycles are almost maintained at
about 360. It can be concluded that the composite sensor has an admirable repeatability for ethanol
gas sensing. A durable response value was measured to explore the stability of the SnO2/g-C3N4-7
sensor. Figure 8b displays the test result every five days, and the response values to 500 ppm ethanol
at 300 ◦C are maintained at around 360. Therefore, we may safely draw the conclusion that the
SnO2/g-C3N4-7-based sensor has an unexceptionable stability for ethanol gas sensing.
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It is generally known that selectivity is another key criterion of gas sensors. Figure 9 summarizes
the selectivity test results of the pure SnO2 and SnO2/g-C3N4-7 sensors to five different gases of
500 ppm, including methanol, ethanol, toluene, formaldehyde, and acetone. It can be seen that the
SnO2/g-C3N4-7 sensor exhibits a higher response to ethanol than to other gases compared to the pure
SnO2 sensor. The higher responses to ethanol may be because ethanol is more likely to lose electrons
in the process of the redox reaction with the absorbed oxygen and hydroxyl group (−OH) and is much
easier to oxidize at the optimum operating temperature [35].
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summarizes the selectivity test results of the pure SnO2 and SnO2/g-C3N4-7 sensors to five different
gases of 500 ppm, including methanol, ethanol, toluene, formaldehyde, and acetone. It can be seen
that the SnO2/g-C3N4-7 sensor exhibits a higher response to ethanol than to other gases compared to
the pure SnO2 sensor. The higher responses to ethanol may be because ethanol is more likely to lose
electrons in the process of the redox reaction with the absorbed oxygen and hydroxyl group (−OH)
and is much easier to oxidize at the optimum operating temperature [35].
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The gas-sensing performance of different sensing materials when using ethanol is listed in
Table 1. As can be seen from Table 1, the response values of Fe2O3 nanoparticles coated with SnO2

nanowires [14], α-Fe2O3/g-C3N4 [35], RGO-SnO2 [36], and Au/SnO2 [37] were 31.18, 7.76, 70.4, and 18,
respectively. In this work, the response value of SnO2/g-C3N4-7 to 100 ppm of ethanol vapor was 85
at 300 °C. Therefore, the SnO2/g-C3N4 composites show an excellent sensing property to ethanol
vapor, and thus have a great potential application.
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The gas-sensing performance of different sensing materials when using ethanol is listed in
Table 1. As can be seen from Table 1, the response values of Fe2O3 nanoparticles coated with SnO2
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nanowires [14], α-Fe2O3/g-C3N4 [35], RGO-SnO2 [36], and Au/SnO2 [37] were 31.18, 7.76, 70.4, and 18,
respectively. In this work, the response value of SnO2/g-C3N4-7 to 100 ppm of ethanol vapor was 85 at
300 ◦C. Therefore, the SnO2/g-C3N4 composites show an excellent sensing property to ethanol vapor,
and thus have a great potential application.

Table 1. Gas-sensing performance comparison of various gas sensors toward ethanol.

Sensing Materials Ethanol Concentration (ppm) Temperature (◦C) Response (Ra/Rg) Ref.

Fe2O3-SnO2 100 300 31.18 [14]
α-Fe2O3/g-C3N4 100 340 7.76 [35]

RGO-SnO2 100 300 70.4 [36]
Au/SnO2 100 340 18 [37]

SnO2/g-C3N4 100 300 85 this work

As displayed in Figure 10a, the absorption edge of SnO2, SnO2/g-C3N4-7 and g-C3N4 are around
377 nm, 441 nm, and 455 nm, respectively. This result can be ascribed to the heterojunction structure
between SnO2 and g-C3N4. The band gap energies of SnO2 and g-C3N4 can be estimated according to
the equation (Ahν = k(hν-Eg)n/2). In this equation, n is determined by the type of optical transition
of a semiconductor. The value for g-C3N4 and SnO2 is 4 and 1, respectively. A, ν, Eg, k and h are
the absorption coefficient, light frequency, Planck constant, band gap and a constant, respectively.
The diagrams are shown in Figure 10b,c. The Eg of SnO2/g-C3N4-7 should be roughly calculated
according to the equation (Eg = 1240/λ) because of the uncertain type of optical transition. As a result,
the Eg of SnO2, g-C3N4, and SnO2/g-C3N4-7 are 3.49 eV, 2.75 eV, and 2.81 eV, respectively.
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The sensing mechanism of the SnO2/g-C3N4 composite towards ethanol gas need to be further
investigated. When the sensor was exposed in air, oxygen molecules were adsorbed on the surface
of SnO2 and capture electrons from the conduction band of SnO2. Then oxygen molecules were
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(hν) for the band gap energy of g-C3N4.
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The sensing mechanism of the SnO2/g-C3N4 composite towards ethanol gas need to be further
investigated. When the sensor was exposed in air, oxygen molecules were adsorbed on the surface
of SnO2 and capture electrons from the conduction band of SnO2. Then oxygen molecules were
ionized to O2−, O−, and O2

−, and the formation of depletion layers led to the increase in the resistance
of the composite sensor. However, when the sensor was exposed to the ethanol gas, the ethanol
molecules proceeded oxidation and the reduction reaction with oxygen ions absorbed on the surface
of the sensor. Concurrently, the ethanol molecules were oxidized into acetaldehyde and eventually
turned into carbon dioxide and water [24]. As a result, the trapped electrons were released back to the
depletion layer of the sensing film, resulting in the decrease in the resistance of the composite-based
sensor. The SnO2/g-C3N4 composite exhibited more preferable gas-sensing properties than that of
pure SnO2. This is mainly due to the high specific surface area and the interaction between g-C3N4

and SnO2. The presence of g-C3N4 can prevent the aggregation of SnO2 particles to form a high
surface approachability structure, leading to the promotion of the adsorption and diffusion process
of ethanol molecules. In this composite, the s-triazine structure g-C3N4 sheet substrate can provide
more active sites to adsorb O2 molecules. The elevated gas-sensing properties may also be due to the
interactions between Sn and g-C3N4, and the heterojunction of the interface region between g-C3N4 and
SnO2. The electrical property at the heterojunction changes when ethanol gas molecules pass through
the interface region between g-C3N4 and SnO2. Both SnO2 and g-C3N4 are n-type semiconductors.
The band gaps are 3.71 eV and 2.7 eV, respectively. The conduction band level of g-C3N4 is more
negative than SnO2. When SnO2 and g-C3N4 were combined, they formed a heterojunction structure.
The electrons will thus inflow from the conduction band of g-C3N4 to the conduction band of SnO2,
leading to a higher potential barrier. As a result, the electrons and holes are separated [38]. Meanwhile,
the heterojunction structure may suppress the recombination of the electron-hole and urge electrons to
quickly transfer from the ethanol vapor to the surface of SnO2/g-C3N4. Therefore, this leads to a higher
response because of the increased conductivity of the heterojunction structure [35]. This co-adjacent
retiform structure could provide more accesses for the gas adsorption and diffusion between SnO2

and ethanol molecules.

O2 + e− → O−2 (1)

2CH3CH2OH + O−2 → 2CH3CHO + 2H2O + e− (2)

2CH3CHO + 5O−2 → 4CO2 + 4H2O + 5e− (3)

3. Materials and Methods

3.1. Chemicals

Urea and Tin (IV) chloride pentahydrate (SnCl4·5H2O, 99.0%) were purchased from Macklin
Biochemical Co., Ltd. (Shanghai, China). All chemicals were used as received, without further purification.

3.2. Preparation of g-C3N4

Graphitic carbon nitride (g-C3N4) wasdirectly synthesized by the pyrolysis of urea in the muffle
furnace (Luoyang Shenjia Kiln Co., Ltd., Luoyang, Henan, China). A total of 20 g urea was put into an
alumina crucible with a cover and then warmed to a temperature of 250 ◦C within 110 min, before
being kept at 250 ◦C for 1 h. Then, the temperature was increased to 350 ◦C within 50 min and kept at
350 ◦C for 2 h. Finally, temperature rose to 550 ◦C within 100 min and was kept at 550 ◦C for another
2 h. The heating rate of the whole reaction was 2 ◦C·min−1. The resulting yellow powder was collected.

3.3. Synthesis of the SnO2/g-C3N4Composite

SnO2/g-C3N4 composites were synthesized through a facile calcination method. In a typical
preparation process, a certain amount g-C3N4 was dissolved in 100 mL H2O and 2.09 g SnCl4·5H2O
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was added into the dispersed suspension with ultrasonic treatment for 2 h. Then, the mixed solution
was transferred into an alumina crucible and put it into the muffle furnace. It was heated to 400 ◦C
for 2 h. Finally, the resulting product was ground to powder. According to this method, the different
mass ratios of the SnO2/g-C3N4 composites were synthesized and marked as SnO2/g-C3N4-5,
SnO2/g-C3N4-7, and SnO2/g-C3N4-9. For comparison, the same method was used to synthesize
the pure SnO2 particles with the absence of g-C3N4.

3.4. Characterizations

The samples were characterized by X-ray diffraction (XRD, Bruker-AXS D8, Bruker, Madison,
WI, USA) with Cu Kα radiation at 40 kV and 25 mA. The structure and morphology of the samples
were observed by field-emission scanning electron microscopy (FESEM, Quanta™ 250 FEG) (FEI,
Eindhoven, The Netherlands). Transmission electron microscopy (TEM) analysis was performed on
a JEOL JEM-2100 microscope (JEOL, Tokyo, Japan) operating at 200 kV. The thermal gravity and
differential thermal analysis (TG-DTA) was carried on TA-SDT Q600 (TA, New Castle, DE, USA) at a
heating rate 10 ◦C·min−1 under an air atmosphere. Nitrogen adsorption-desorption isotherms were
obtained on a Quantachrome Autosorb-iQ sorption analyzer (Quantachrome, Boynton Beach, FL,
USA). Before carrying out the measurement, the samples were degassed for more than 6 h at 300 ◦C.

3.5. Gas-Sensing Test

The gas-sensing performance of the as-synthesized samples when using ethanol was tested by
using the intelligent gas-sensing analysis system of CGS-4TPS (Beijing Elite Co., Ltd., Beijing, China).
Figure 11 shows a brief schematic diagram of the device. The gas sensors were prepared according to
the usual way. A small amount of the as-prepared sample was fully ground in agate mortar with a
few drops ethanol, which served as the agglomerant to form starchiness. Afterwards, the pastes were
equably spread on the ceramic substrate (13.4 mm × 7 mm) with interdigitated Ag-Pd electrodes to
form the thin film. Before carrying out the test, the substrate was aged at 180 ◦C for 24 h to improve
the stability and repeatability of the gas sensors. The response of the sensors was defined as the ratio
of Ra/Rg, where Ra and Rg were the resistance of sensor in air and in the target gas, respectively.
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4. Conclusions

In this study, the SnO2/g-C3N4 composites with a high surface area (132.5 m2·g−1) were
synthesized via a facile calcination method by using SnCl4·5H2O and urea as the precursor. The SnO2

particles were highly distributed on the g-C3N4 nanosheets. The gas-sensing properties of the
SnO2/g-C3N4-7 composite-based sensor exhibited preferable results when compared to the pure SnO2,
including the sensitivity and selectivity. Considering the easy-preparation process, the SnO2/g-C3N4

composite could be a promising candidate for high-performance ethanol gas-sensing applications.
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