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Abstract: Doping of titanium dioxide with p-block elements is typically described as an efficient
pathway for the enhancement of photocatalytic activity. However, the properties of the doped
titania films depend greatly on the production method, source of doping, type of substrate, etc.
The present work describes the use of pulsed direct current (pDC) magnetron sputtering for the
deposition of carbon-doped titania coatings, using CO2 as the source of carbon; ratios of O2/CO2

were varied through variations of CO2 flow rates and oxygen flow control setpoints. Additionally,
undoped Titanium dioxide (TiO2) coatings were prepared under identical deposition conditions
for comparison purposes. Coatings were post-deposition annealed at 873 K and analysed with
scanning electron microscopy (SEM), X-ray diffreaction (XRD), atomic force microscopy (AFM),
and X-ray photoelectron spectroscopy (XPS). The photocatalytic properties of the thin films were
evaluated under ultraviolet (UV) and visible light irradiation using methylene blue and stearic
acid decomposition tests. Photoinduced hydrophilicity was assessed through measurements of the
water contact angle under UV and visible light irradiation. It was found that, though C-doping
resulted in improved dye degradation compared to undoped TiO2, the UV-induced photoactivity of
Carbon-doped (C-doped) photocatalysts was lower for both model pollutants used.

Keywords: carbon doping; titanium dioxide; carbon dioxide; magnetron sputtering; photocatalysis;
visible light; methylene blue; stearic acid

1. Introduction

Titanium dioxide (TiO2) photocatalysts have attracted a lot of attention since the discovery of
their properties through photocatalytic water splitting reactions in 1972 [1]. Over the past few decades
titanium dioxide-based photocatalyts have been the subject of extensive research efforts, due to their
low cost, low toxicity, and high chemical- and photo-stability. Anatase is the crystalline phase of
titania that is typically referred to as being the most photocatalytically active, as compared to the
other phases of TiO2; rutile and brookite. Despite a variety of applications of photocatalytic materials
being proposed (e.g., building materials, antimicrobial surfaces, self-cleaning surfaces, waste water
treatment, etc.), the practical application of photocatalytic materials still remains quite limited [2,3].
This is due to several drawbacks of titania, such as low photonic efficiency and the relatively high band
gap value. Also, the short lifetime and fast recombination rates of the photogenerated charge carriers
make TiO2 photocatalysts generally unsuitable for high throughput applications, e.g., the purification
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of heavily polluted industrial wastewater. The band gap value of 3.2 eV (for anatase) means that only
UV light with a wavelength of 387 nm or below can be used for the photoactivation of titania. As UV
constitutes just under 4% of the solar spectrum, for many practical applications it is necessary to shift
the photocatalytic activity of titanium dioxide into the visible range.

Extensive work in this direction started with the pioneering work of Asahi and co-workers [4]
who showed that the visible light response of titanium dioxide can be significantly enhanced through
nitrogen doping. Consequently, the doping of TiO2 with p-block elements still remains a popular
method for the synthesis of visible light photocatalysts, along with other techniques, such as transition
metal doping [5] or photosensitization. Various p-block elements have been studied as dopants for
the enhancement of photocatalytic properties, including nitrogen [6–11], carbon [12], sulphur [13,14],
boron [15], fluorine [16], and combinations of several elements [17,18]. The exact mechanism of
the photocatalytic activity enhancement is still under question, however it is generally accepted
that band gap narrowing takes place due to mixing of the 2p states of the dopant with the 2p
states of oxygen [19]. Alternatively, it has been suggested that the red shift observed as a result
of p-element doping is due to the formation of colour centres, and that the doped materials may have
completely different band gap electronic structures, as compared to undoped TiO2 [20]. Compared to
N-doping, C-doping is a considerably less studied field, mainly due to fact that synthesis routes for
C-doped TiO2 photocatalysts often involve multiple stages and/or unstable and costly reagents [19].
Nevertheless, a number of studies that are available indicate that carbon doping is a promising method
for the enhancement of titania photocatalytic activity [21,22] due to band gap narrowing and the
extended lifetime of photogenerated electrons and holes. The well-known fact that carbon-doped
titania photocatalysts can have very different characteristics, with carbon found in interstitial, as well
as in substitutional positions in the titania lattice, depending on the synthesis route, means that the
choice of production technique is of particular importance in this case.

Titania thin films, as opposed to powdered or particulate photocatalysts, offer multiple advantages
from the point of practical applicability, such as high recycle rates, ease of recovery, and separation from
the media [23]. A number of deposition techniques are typically used for the deposition of titania and
doped titania coatings, including chemical vapor deposition (CVD), sol gel, atomic layer deposition
(ALD), hydrothermal synthesis, magnetron sputtering, etc. Of the methods given, magnetron sputtering
is a process of particular industrial importance, as it is widely used for the production of high quality
coatings for various commercial applications, including glazing products, thin film photovoltaics,
data storage media, etc. [24,25]. It offers such advantages as excellent scalability, versatility, and high
uniformity of the produced thin films. A number of techniques can be used for the deposition of
C-doped TiO2 via magnetron sputtering, including using CO2 gas [26] or solid carbon targets as
the source of carbon [27]. However, due to a limited number of studies available to date, it is still
unclear how the choice of the dopant affects structural and photocatalytic properties of the C-doped
titania coatings.

Therefore, the authors of the present work have performed a series of consecutive studies
on the deposition of C-doped titania via reactive pulsed DC (pDC) magnetron sputtering, using
different sources of carbon. This work describes the deposition of C-doped TiO2 using a mixture of
CO2/O2 as the reactive gas at different ratios, followed by a study of the structural, morphological,
and photocatalytic properties of these films. Carbon-doped coatings were compared to undoped
titania coatings deposited under otherwise identical conditions.

2. Materials and Methods

2.1. Deposition of the Coatings

In this study the carbon-doped TiO2 films were prepared using a Teer Coatings UDP350 reactive
pDC magnetron sputtering system (Teer Coatings Ltd., Droitwich, UK), without additional heating
applied to the substrate. A schematic diagram of the rig is shown in Figure 1. In brief, the sputtering
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rig was fitted with a 300 mm × 100 mm directly cooled titanium metal target (99.5% purity) mounted
onto a type II unbalanced planar magnetron, installed through the chamber wall. The titanium metal
target was driven in pulsed DC mode using a dual channel power supply (Advanced Energy Pinnacle
Plus, Fort Collins, CO, USA), at 100 kHz pulse frequency, and a duty cycle of 50%. The base pressure of
the vacuum chamber before sputtering was 2.0 × 10−5 mbar or lower. All titanium dioxide films were
deposited onto soda lime glass substrate materials. The substrates were ultrasonically pre-cleaned
in propanol prior to deposition (all reagents used in this work were purchased from Sigma Aldrich,
unless stated otherwise) and mounted on the rotatable substrate holder at 10 cm separation from the
titanium target. During the sputtering process, the substrate holder was rotated at a speed of 10 rpm.
The titanium metal target power was fixed at 1000 W for each run; the target was pre-sputtered in
an argon plasma for 10 min prior to the deposition process to remove any oxide layer on the target
surface (with the substrates shielded from the target), and the reactive sputtering time for each run
was 2 h. The deposition runs were carried out in an Ar/O2 and Ar/O2/CO2 plasma for undoped
and carbon-doped titanium dioxide films, respectively. The Ar flow was controlled by a mass flow
controller and set at 15 sccm. The O2 flow was controlled by optical emission monitoring (OEM) at
three different set points of 25%, 30%, and 35% of the full metal signal (FMS). To vary the carbon
concentration, the CO2 flow rate was varied by the mass flow controller at different flows of 2.5,
5, and 7 sccm. The coatings were post-deposition isothermally annealed for 30 min at 873 K in air
for crystal structure development and then allowed to cool gradually in air for 10–12 h to avoid the
formation of thermal stresses in the coatings.
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Figure 1. Schematic representation of the Teer UDP350 sputtering rig.

2.2. Characterization of the Coatings

The film thickness was measured via a Dektak™ stylus profilometer (Bruker, Billerica, MA, USA).
The surface images of the coatings were obtained with scanning electron microscopy (SEM) (JEOL
JSM-5410LV scanning microscope) (JEOL, Peabody, MA, USA). The micro structure and crystallinity
of the thin films were investigated with a Panalytical Xpert powder X-ray diffractometer (XRD)
(PANalytical Ltd., Cambridge, UK) operating with Cu Kα1 radiation at 0.154 nm in grazing incidence
mode at a 3◦ angle of incidence, over a scan range from 20◦ to 70◦ 2θ and the accelerating voltage
and applied current were 40 kV and 30 mA, respectively. The bulk composition of the thin films was
characterized by energy dispersive X-ray spectroscopy (EDX, JEOL model JSM-5410LV scanning
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microscope) (JEOL, Peabody, MA, USA). The Ti 2p, O 1s, and C 1s core levels on the surface
were measured by X-ray photoelectron spectroscopy (XPS) to examine the surface composition,
electron binding energy, and bonding sites on the thin films. The XPS analysis was performed
using an AMICUS photoelectron spectrometer (Kratos Analytical Ltd., Manchester, UK) equipped
with an Mg Kα X-ray as the primary excitation source. The binding energy was referenced to the
Ag 3d line at 368.2 eV for calibration. Curve fitting was performed using a Gaussian function
with a Shirley background. The surface topography of the films was studied using atomic force
microscopy (AFM) (Veeco, Plainview, NY, USA), specifically a Veeco NanoScope IV MultiMode AFM.
The transmission data of the coatings were obtained using an Ocean Optics USB4000 UV-Visible
spectrometer (Ocean Optics Inc., Oxford, UK), which was used in turn to evaluate the band gap
energy according to the Tauc plot method, by plotting (αhν)1/2 as a function of hν and extrapolating
the linear region to the abscissa (where α is the absorbance coefficient, h is Plank’s constant, ν is
the frequency of vibration). The photoinduced wettability was evaluated at ambient temperature by
analyzing the change in the water contact angles using a Theta Lite optical tensiometer (Biolin Scientific,
Manchester, UK), while irradiating with UV light or visible light (identical to the light sources used for
the methylene blue degradation described in the latter section). Prior to the experiments of contact
angle measurements, the thin films were kept in the dark for 24 h.

2.3. Photocatalytic Activity Assessment

2.3.1. Decomposition of Methylene Blue (MB)

The photocatalytic properties of the series of thin films deposited with different carbon
concentrations were evaluated under UV and visible light illumination. For photocatalytic oxidation
of methylene blue, samples of the same geometrical size (1.5 × 2.5 cm2) were immersed in
40 mL conditioning solution of methylene blue (concentration 1.5 µmol/L) in the dark at room
temperature for 30 min to reach the adsorption-desorption equilibrium. The samples were then
withdrawn from the conditioning solution and immersed into 40 mL of testing solution (concentration
1.5 µmol/L—pre-defined experimentally to detect the photocatalytic responses of all samples in
a 1-hour experiment) with continuous magnetic stirring, while being irradiated with either UV or
visible light for a total time of 1 h. During irradiation, the absorbance of methylene blue at 664 nm
was monitored continuously with an Ocean Optics USB4000 spectrometer for one hour. Each coating
was tested both under UV and visible light; 2 × 15 W 352 nm Sankyo Denki BLB lamps were used
as the UV light source, while visible light was simulated by combining a fluorescent light source
(2 × 15 W Ushio fluorescent lamps) with a Knight Optical 395 nm long pass UV filter. The emission
spectra of the light sources used are given elsewhere [28,29]. According to the Lambert—Beer law,
the concentration of the dye is proportional to the absorbance decay. The apparent first order rate
constant, ka, was used as a quantitative characterization of the photocatalytic degradation rate of MB.
Values for ka were found from the gradient of the graph of At/At=0 versus experiment time (At=0 and
At are the peak absorbance values of the methylene blue solution at 664 nm at time 0 and time of
experiment, respectively). A series of reference tests was performed prior to the photocatalytic activity
measurements, which included tests with blank samples (soda-lime glass of the same geometrical
size) under each light source, as well as tests of each sample in dark conditions, to prove that solution
decolourization was caused by a photocatalytic reaction. As none of the reference tests showed more
than 1% peak height decay in a 1 h experiment, their effect was neglected in further calculations.

2.3.2. Decomposition of Stearic Acid (SA)

The stearic acid decomposition test was used for verification of the dye degradation results
in this work. It is generally accepted that the stearic acid photocatalytic decomposition reaction
pathway has no major intermediates, therefore it can be easily monitored through IR-observable
species (SA disappearance or CO2 generation). A 0.1 M stearic acid solution in acetone was used for
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the test. The same sample size of the thin films, 1.5 cm × 2.5 cm, were spin-coated with 0.5 mL of
stearic acid using an Osilla spin coater at 1000 rpm speed for 30 s. After spin coating the samples were
kept in the dark for 1 h to ensure that the acetone had evaporated from the surfaces. As the stearic acid
has three strong absorption peaks at 2958, 2923, and 2853 cm−1, the model pollutant decomposition
was monitored here by Fourier transform infrared spectroscopy (FTIR), using a Perkin Elmer Spectrum
Two IR spectrometer (Perkin Elmer, Waltham, MA, USA), in the range 2700–3000 cm−1 every 24 h.
FTIR spectra were collected in absorbance mode and the amount of stearic acid on the surface of
each sample was evaluated through the integrated area under the corresponding FTIR absorbance
spectrum. Each sample was tested under both UV and visible light irradiation. The light sources
used for irradiation of these samples were identical to the light sources used for the methylene blue
decomposition tests.

3. Results and Discussion

3.1. Coatings Overview

An overview of deposition conditions, thickness information, and compositional results for the
undoped and C-doped TiO2 coatings are summarized in Table 1. In terms of visual appearance,
all coatings were uniform and optically transparent, with no visual signs of stresses. The color of the
coatings varied from colorless (for undoped titanium dioxide samples) to pale yellow (for coatings
deposited at low flow rates of CO2) and pale brown (for coatings deposited at high CO2 flow rates).

Table 1. Summary of the deposition conditions and compositional properties of undoped and C-doped
titanium dioxide films on glass substrate.

Sample ID
Optical Emission

Monitoring (OEM)
Setpoint, % FMS

CO2 Flow,
sccm

Thickness,
nm a Ti, at. % b O, at. % b C, at. % b

T25 - - 490 34.9 65.1 -
T25C2.5 25 2.5 820 32.9 62.5 4.5
T25C5 25 5 860 32.9 61.6 5.0
T25C7 25 7 870 35.2 59.4 5.5

T30 30 - 510 40.9 59.1 -
T30C2.5 30 2.5 820 33.9 62.0 4.1
T30C5 30 5 870 33.5 60.8 5.3
T30C7 30 7 910 35.8 58.6 5.6

T35 35 - 600 40.2 59.8 -
T35C2.5 35 2.5 840 33.6 60.7 4.7
T35C5 35 5 1300 34.1 59.8 6.1
T35C7 35 7 1500 36.7 56.9 6.4

a Stylus profilometry results; b energy dispersive X-ray spectroscopy (EDX) results.

It was observed that the thickness of the carbon-doped films was considerably greater than that
of the undoped titania; also, a gradual increase of coating thickness was observed with increasing
carbon dioxide flow rate. The thickness difference between the corresponding coatings of the arrays
deposited at 25% and 30% OEM setpoints was minimal, while array coatings at 35% OEM signal were
considerably thicker, both in the case of undoped and C-doped samples. As established from earlier
work, using a 25% OEM setpoint resulted in a titanium-to-oxygen ratio close to the stoichiometric
2:1. For undoped coatings deposited at higher OEM setpoints, the ratio of Ti:O was slightly higher.
Carbon content in the doped coatings varied from 4 to 6.4 wt %. Unsurprisingly, coatings deposited
at higher OEM setpoints (i.e., lower O2 content) were characterized with higher carbon content,
as titanium preferentially reacts with oxygen, and creating oxygen deficiencies promotes carbon
incorporation. Similar trends were seen as the carbon dioxide flow was increased.
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Examples of SEM images for carbon-doped TiO2 and undoped TiO2 thin films deposited at 35%
OEM setpoint are shown in Figure 2. It is evident that all films were characterized with relatively
smooth surfaces consisting of small densely packed grains, as typically observed for titania and doped
titania films deposited by reactive magnetron sputtering [24,30]; no obvious defects could be seen on
the film surfaces.
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3.2. Morphology of the Films (AFM)

Morphological properties of the coatings (surface area and surface roughness) were studied with
atomic force microscopy (AFM); the data on surface area and surface roughness values are presented
in Table 2. The surface area of all deposited films was around 900 µm2; the variations of surface
area between different samples was <1% for undoped and C-doped coatings. The roughness of the
films obtained by AFM showed that coatings deposited at higher CO2 flow rates were characterized
with higher roughness values. Examples of AFM images for carbon-doped TiO2 and undoped TiO2

thin films deposited at 35% OEM setpoint are shown in Figure 3. The differences in the surface
topography of the films, from relatively smooth to the dense domains as a result of increasing carbon
dioxide flow, are obvious from Figure 3. Despite the considerable difference in film thicknesses, similar
values of surface area mean that the photocatalytic performance of the samples could be compared
directly, rather than being normalized per unit of surface area, as is typically done when comparing
the photocatalytic activity of samples with largely different surface areas [31].
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Table 2. Summary of the deposition conditions and surface properties of undoped and C-doped
titanium dioxide films on glass substrate.

Sample
ID

Surface
Roughness, nm a

Surface Area,
µm2 a Ti3+/Ti4+ b Ti–C,

at. % b
C–O,

at. % b
Ti–C–O,
at. % b

Band Gap,
eV c

T25 5.7 902 - - - - 3.22
T25C2.5 6.0 901 - 0.06 0.28 0.28 3.13
T25C5 4.2 901 0.02 0.09 0.72 0.39 3.15
T25C7 13.0 902 0.03 0.18 0.34 0.48 3.08

T30 6.0 901 - - - - 3.20
T30C2.5 5.8 901 - 0.08 0.39 0.16 3.04
T30C5 5.8 901 0.02 0.13 0.55 0.42 3.05
T30C7 10.0 902 0.04 0.27 0.49 0.34 2.63

T35 6.2 911 - - - - 3.18
T35C2.5 12.8 902 - 0.11 0.37 0.51 3.00
T35C5 11.0 902 0.02 0.18 0.74 0.32 2.02
T35C7 12.4 902 0.06 0.31 0.49 0.46 2.17

a Atomic force microscopy (AFM) results; b Calculation based on the X-ray photoelectron spectroscopy (XPS) results;
c Calculation based on transmittance data.
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3.3. Film Crystallinity (XRD)

X-ray diffraction (XRD) analysis was employed to characterize the crystal structure of the undoped
and C-doped thin films fabricated in this study. The XRD patterns of all samples before annealing
were indicative of amorphous or weakly crystalline structures. After annealing, all samples were
crystalline; sharp peaks observed at 2θ ca. 25.3◦, 37.7◦, 48.0◦, and 55.0◦ on the diffraction patterns of
all the analyzed samples can be identified as TiO2 anatase phase peaks (crystallographic card number
96-900-8215). Figure 4 shows the XRD patterns of undoped and carbon-doped TiO2 films deposited
at 25% OEM setpoint after isothermal annealing in air at 873 K. No peaks that could be attributed
to the other TiO2 crystal phases (rutile and brookite) were seen on the diffraction patterns. It can be
seen that for the films produced at higher flows of carbon dioxide, the peaks were shifted to slightly
lower values; this can be indicative of crystal lattice deformation as the result of carbon introduction.
This shift is typically explained by the lattice distortion of TiO2 due to internal stress (carbon inclusion
in this case), which caused the expansion of the unit cell volume [32]. Overall, the carbon incorporation
in TiO2 does not cause any crystal phase transformations of TiO2, as all deposited films were in the
anatase phase with a (101) preferred orientation, regardless of the OEM setpoint and carbon dioxide
flow variations.
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Figure 4. X-ray diffraction (XRD) patterns of selected C-doped and undoped TiO2 coatings (25% optical
emission monitoring (OEM) setpoint) deposited on glass substrates and annealed at 873 K.

3.4. XPS Results

To examine the species and the bonding states of all elements in the deposited undoped and
carbon-doped TiO2 thin films, XPS spectra were recorded and deconvoluted. The XPS survey scans
of all samples showed the presence of titanium and oxygen; a carbon peak was also seen for all
carbon-doped TiO2 thin films (Figure 5a). Gaussian functions were used to deconvolute the Ti 2p, O 1s,
and C 1s spectra. Ratios of titanium/oxygen on the surface calculated based on the XPS data were in
good correlation with the bulk composition of the coatings estimated based on the EDX data (given in
Table 1).

Figure 5b shows an example of a high resolution XPS spectra for Ti 2p (sample T25C7). The two
strong peaks at binding energies of 458.8 and 456.4 eV were observed for all TiO2 thin films and can
be assigned to Ti4+ 2p3/2 and Ti4+ 2p1/2, respectively [33]. Interestingly, for the films deposited at
higher CO2 flows (5 and 7 sccm) the presence of Ti3+ can be seen on the XPS spectra—Ti3+ 2p3/2 and
Ti3+ 2p1/2 at 457.3 and 462.3 eV, respectively. At the same time, no evidence of the presence of Ti3+

could be seen on the XPS spectra of the undoped and carbon-doped TiO2 thin films deposited at a low
(2.5 sccm) flow of CO2. To quantify the observed effect, the ratio of Ti3+/Ti4+ was calculated for each
sample (given in Table 2). Apparently, the ratio of the Ti3+ to Ti4+ states increased with increasing
the CO2 flow rate. Ti3+ is typically reported as a surface defect of TiO2 that plays an important role
for photocatalysis and the photoinduced hydrophilicity phenomenon. It can also act as an active site
for oxygen desorption, prevent the electron-hole recombination process, and enhance visible light
activity [34,35]. The Ti 3d peak at 455 eV that is typically assigned to Ti–C bonds could not be detected,
but the existence of Ti-C bonds was confirmed on the high resolution C 1s spectrum [36]. Figure 5c
shows an example of the high resolution O 1s spectrum (sample T25C7) and its deconvolution into
three peaks. The peak at 530.2 eV is assigned to the lattice oxygen of TiO2 [37], while two other peaks
at 532.1 and 534.6 eV correspond to C–O and C=O bonds, respectively [38]. For all carbon-doped
TiO2 thin films, the binding energies exhibited a slight positive shift, which can be explained by
carbon incorporation into the TiO2 lattice [39]. Figure 5d shows an example of the high resolution
C 1s XPS profile of the carbon-doped TiO2 thin film (sample T25C7) deconvoluted into four peaks.
The major broad peak at 285 eV is typically assigned to contaminant hydrocarbons (C–C) [40]. It is often
reported that this peak disappears with increasing Ar+ etching time during the XPS measurement [41].
Contaminant carbon species are typically believed to not contribute to the visible light photocatalytic
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activity, however several works suggest that carbon may exist in the grain boundaries of TiO2 and
therefore acts as a photosensitizer [42,43]. The peak at 283.4 eV corresponding to the titanium-carbon
bond (Ti–C) [44] was observed for all carbon-doped TiO2 thin films. The presence of this peak indicates
the substitution of oxygen atoms by carbon atoms as the result of carbon-doping (substitutional
doping). The Ti–C bonding percentage was estimated using the relative areas of the peak at 283.4 eV
and is shown in Table 2. This confirms the presence of carbon bonded in the TiO2 matrix. It can be
concluded that the carbon atoms were substituted in some lattice oxygen sites not only at the surface
but also in the bulk region, and the carbon concentration was increased with increasing CO2 flow
rate. Two peaks at 286.6 eV and 288.3 eV can be attributed to the oxygen bound species, C–O and
Ti–C–O, respectively, confirming the fact that some carbon was incorporated into the titania lattice in
place of Ti atoms (interstitial doping) [22]. The atomic percentage of C doping in place of Ti atoms was
estimated using the relative areas of the peaks at 288.3 eV and is given in Table 2. Reportedly, carbon
substitution of both oxygen and titanium atoms, as well as the presence of the carbonate species (C–O)
can contribute to enhanced visible light photocatalytic activity through band gap narrowing [19].
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spectrum (sample T25C2.5); (b) Ti 2p spectrum (sample T25C7); (c) O 1s spectrum (sample T25C7);
(d) C 1s spectrum (sample T25C7).

3.5. Optical Properties and Band Gap Calculations

Optical band gaps of undoped and carbon-doped titania films were calculated using the Tauc
plot method, as described in the Materials and Methods section. Graphical examples of the band gap
calculation of selected samples are given in Figure 6 (films deposited at 35% OEM setpoint). Calculated
band gap values of all the coatings studied are given in Table 2, along with the other analytical results.
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According to the calculation results, band gap values of undoped titania films deposited at 25%, 30%,
and 35% OEM setpoint values were 3.22, 3.20, and 3.18 eV, respectively. These numbers are in good
agreement with the data typically reported for anatase titania (ca. 3.2 eV). It is obvious from the
data presented that increasing the CO2 flow rate, along with increasing the OEM setpoint resulted
in remarkable red shifts of the absorbance edge. The large shift in band gap towards the visible light
region (up to 1.2 eV—for sample T35C5, compared to undoped titania) is due to the inclusion of carbon
into the TiO2 crystal lattice and subsequent band gap narrowing. Despite the different positions of
the carbon atoms that may occur as a result of C-doping (incorporation in the TiO2 structure as Ti–C,
Ti–C–O, and carbonate species), it is generally accepted that band gap narrowing is a result of the
existence of mid-gap state(s) caused by mixing of the C 2p and O 2p states [19].Nanomaterials 2017, 7, 113 10 of 16 
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Figure 6. Examples of band gap calculations for selected C-doped and undoped titania samples
(deposited at 35% OEM setpoint).

3.6. Wettability Measurements

Titanium dioxide-based surfaces are known for their ability to exhibit reversible wettability
behaviour, becoming superhydrophilic upon sub-band gap photoexcitation and returning to their
original wettability as the irradiation stops [45,46]. Water droplet contact angle (CA) measurements
were performed here to study the wettability of the thin films upon UV and visible light irradiation;
the results are given in Table 3. It can be seen that the undoped titania coatings and coatings produced
at 2.5 sccm CO2 flow rate showed the highest values of CA both before and after irradiation. Thus,
the contact angle values of sample T25 change from 92◦ to 18◦ and 55◦ after 60 min of UV and
visible irradiation, respectively. While the initial contact angles of the undoped samples T30 and
T35 were lower compared to T25 (53◦), neither of these samples reached a superhydrophilic state
after 1 h of irradiation. Whilst the initial values of the carbon-doped thin films produced at 2.5 sccm
CO2 flow rate were comparable to those of undoped titania, the CA reduction under both UV and
visible light irradiation was greater in this case. At the same time, wettability properties of the
C-doped coatings produced at higher flow rates of CO2 (5 and 7 sccm) were remarkably different.
These coatings exhibited superhydrophilicity (CA ca. 10◦) prior to the light irradiation, with perfect
wettability (a zero contact angle) after irradiation with either UV or visible light. However, this
phenomenon was unsurprising, considering the presence of Ti3+ states observed with XPS for these
samples. It is a frequently reported fact that an increased number of Ti3+ states on the surface results
in considerably higher hydrophilicity [47]. Therefore, the lowest contact angle values both prior to and
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after irradiation in this study were observed for the samples that earlier showed the presence of Ti3+

states on their surfaces.

Table 3. Results of wettability measurements and photocatalytic tests of C-doped and undoped
Titanium dioxide (TiO2) coatings annealed at 873 K.

Sample
ID

Initial CA,
deg.

CA after 1 h
UV, deg.

CA after 1 h
vis, deg.

Kinetic Constant, k

MB UV,
k × 105, s−1 a

MB vis,
k × 105, s−1 a

SA UV,
k × 102, A cm−1 h−1 b

SA vis,
k × 102, A cm−1 h−1 b

T25 92 18 55 1.8 0.5 4.0 0.4
T25C2.5 60 10 15 1.8 1.5 0.8 0.6
T25C5 11 ~0 ~0 1.3 1.0 1.1 0.3
T25C7 11 ~0 ~0 1.4 0.8 1.0 0.2

T30 53 13 20 1.4 0.9 1.6 0.7
T30C2.5 58 13 16 0.8 0.9 1.2 0.1
T30C5 11 ~0 ~0 0.7 1.5 1.3 0.2
T30C7 10 ~0 ~0 0.8 1.4 0.7 0.2

T35 54 10 22 1.4 0.9 2.3 0.9
T35C2.5 63 12 14 0.9 1.0 0.4 0.1
T35C5 10 ~0 ~0 1.0 2.1 0.9 0.3
T35C7 10 ~0 ~0 1.4 2.0 1.3 0.6

a MB UV/Vis—Methylene blue degradation under UV or visible light, respectively; b SA UV/Vis—Stearic acid
degradation under UV or visible light, respectively.

3.7. Photocatalytic Tests Results

To investigate the effect of carbon-doping on the photocatalytic activity of TiO2 thin films,
two types of photocatalytic tests were used in this work; namely the decomposition of methylene blue
and stearic acid. The MB decomposition reaction was approximated to pseudo first order kinetics
and the reaction constants for the samples studied are given in Table 3. Examples of MB decay rates
for the selected samples under UV and visible light irradiation are shown in Figure 7. The results
under UV light irradiation are shown in Figure 7a. The methylene blue degradation rate constants for
undoped TiO2 thin films were around 1.4–1.8 × 10 −5 s−1. As can be seen from the data presented in
Table 3, carbon doping did not help to improve UV light photocatalytic activity in this case; the rate
constants of all C-doped samples were equal to or lower than those of the undoped titania samples.
Figure 7b shows the selected methylene blue photocatalytic degradation under visible light irradiation.
All undoped TiO2 thin films showed low rates of MB decay under visible light irradiation with kinetic
constants below 1 × 10−5 s−1, and no significant variation of the kinetic constant values was seen for
undoped titania coatings produced at different OEM setpoints. However, the C-doped samples showed
higher photocatalytic activity under visible light irradiation. Generally, the ability to photodegrade
MB under visible light irradiation increased with increasing OEM setpoint along with increasing CO2

flow rate. Of the samples studied, the highest MB decay rates under visible light irradiation were seen
for samples T35C5 and T35C7. Given that the the band gap value is indicative of light absorbance, it is
no surprise that samples T35C5 and T35C7 with the lowest band gap values (and consequently the
highest visible light absorbance) proved the most active under visible light conditions.

Photocatalytic degradation of stearic acid, a common model pollutant for assessing self-cleaning
properties of photocatalytic coatings, was monitored with FTIR through the disappearance of SA
absorbance peaks. Reaction rate constants were calculated for the quantitative characterisation of
the degradation process under UV and visible light (presented in Table 3). Prior to the experiments
with photocatalytic surfaces, the test was carried out on pieces of uncoated glass. As no significant
SA peak reduction was detected on plain glass under either of the two light sources used, it can be
concluded that stearic acid films were stable under both UV and visible light. Examples of the decay
of the integrated area under the SA absorbance spectrum for selected samples are given in Figure 8.
From the data presented in Table 3, it is obvious that the highest degradation rates under UV light
were recorded for undoped titania films, and in particular for T25. It is obvious that carbon doping had
a detrimental effect on the coatings’ ability to degrade stearic acid. No improvement of photocatalytic
activity for C-doped coatings could be seen under visible light either. While selected C-doped coatings
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outperformed sample T25, the overall rates of stearic acid degradation under visible light remained
rather low.
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Two types of photocatalytic tests were used in this work to cross-verify whether the incorporation
of carbon into the titania lattice had a positive effect on photocatalytic activity. The stearic acid test
was also used because the suitability of the dye degradation test is often questioned as a method for
the determination of visible light activity [48]. Though no direct correlation between quantitative
results of these two testing methods was found here, both sets of results were indicative of the fact that
C-doping had a rather detrimental effect on the UV light photocatalytic activity of the samples, while
improvement of the visible light activity was found only for two samples of the array (T35C5 and
T35C7). As for visible light induced stearic acid degradation, the overall low levels of photocatalytic
activity seen under visible light makes it difficult to quantify the activity precisely. Despite the fact
that authors often report the correlation between the results of different photocatalytic tests [49,50],
the examples of non-correlative results are also often reported [14]. This is evidence of the fact that
some model pollutants can be decomposed much more easily than others.

Despite the widely published information that carbon doping is an efficient method of
enhancement of UV and introduction of visible light photocatalytic activity, the present work confirms
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the fact that the properties of a photocatalytic material depend greatly on the production method,
phase composition of TiO2, position of carbon in titania lattice, etc. It is frequently stressed in the
literature that the exact mechanism of the enhancement of TiO2 photocatalytic properties via C-doping
is not yet fully understood [19]. The majority of the work reporting significant improvements of
photocatalytic activity for C-doped titania films report carbon found either in the interstitial [51,52] or
in substitutional [26,53] position, while all of the C-doped films deposited in the present work reveal
carbon in both positions in the same film. Similar results observed for nitrogen-doped samples may
suggest that the presence of dopants in both positions may cancel out the effect, as compared to the
samples where the dopant is found only in one of the positions [54]. It is also frequently mentioned
in the literature that, for doped TiO2, excessive dopant may act as recombination sites, therefore
lowering the photocatalytic activity. We assume that this hypothesis was the reason for the lower
overall photocatalytic activity of the C-doped coatings produced here, as compared to undoped titania.
This suggestion is supported by the fact that the UV-induced activity of C-doped photocatalysts for all
samples was lower than that for undoped TiO2. Consequently, it may be concluded that the use of
C-doped photocatalysts produced via magnetron sputtering with CO2 gas as the source of carbon is
practical, only when the extension of the absorption spectrum into the visible range is more important
than the efficient use of UV photons, and when the pollutants are relatively easy degradable [14].

4. Conclusions

The present work describes the deposition of C-doped titanium dioxide coatings onto glass
substrates via reactive magnetron sputtering using mixtures of CO2 and O2 as the reactive gas.
Undoped titania coatings were deposited under otherwise identical conditions for comparison
purposes. It was demonstrated that variations of the OEM setpoint, as well as the CO2 flow rate,
allowed variation of the carbon doping content in the coatings (ca. 4–6.5 wt %, according to the EDX
results). Carbon films were found to be considerably thicker than the undoped titania films. Typically,
for magnetron sputtered titania coatings, all as-deposited samples were amorphous; post-deposition
annealing at 873 K resulted in anatase phase formation for all the films studied, as identified with
XRD. XPS analysis revealed the existence of Ti3+ species for the coatings deposited at higher flows of
CO2; carbon dopant atoms were found in both interstitial and substitutional positions in the titania
lattice. Significant band gap narrowing was achieved as the result of C-doping, with BG values as low
as 2.02 eV, compared to ca. 3.2 eV for undoped titania. In contrast to undoped titania films, C-doped
samples showed higher photoinduced wettability. Carbon-rich coatings exhibited superhydrophilicity
prior to irradiation; the latter phenomenon was found to correlate with the presence of Ti3+ species.
Photocatalytic activity was tested using dye (MB) and stearic acid decomposition tests; UV-induced
photocatalytic activity of the undoped TiO2 films was superior to C-doped ones for both pollutants.
Visible light photoactivity of carbon-rich samples was found to be improved in the case of MB
degradation, while stearic acid decomposition results under visible light were low for all the films
studied. Overall, it can be concluded that the above method is practical for producing coatings when
the extension of the absorption spectrum into the visible range is more important than the efficient use
of UV photons and the target pollutants are easily degradable.
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