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Abstract: siRNA is a promising therapeutic solution to address gene overexpression or mutations
as a post-transcriptional gene regulation process for several pathological conditions such as viral
infections, cancer, genetic disorders, and autoimmune disorders like arthritis. This therapeutic
method is currently being actively pursued in cancer therapy because siRNA has been found to
suppress the oncogenes and address mutations in tumor suppressor genes and elucidate the key
molecules in cellular pathways in cancer. It is also effective in personalized gene therapy for several
diseases due to its specificity, adaptability, and broad targeting capability. However, naked siRNA is
unstable in the bloodstream and cannot efficiently cross cell membranes besides being immunogenic.
Therefore, careful design of the delivery systems is essential to fully utilize the potential of this
therapeutic solution. This review presents a comprehensive update on the challenges of siRNA
delivery and the current strategies used to develop nanoparticulate delivery systems.

Keywords: siRNA; nanoparticles; delivery systems; cancer therapy; tumor; RNAi; gene delivery;
targeted delivery

1. Introduction

RNAi was first discovered by Mello and Fire in mammalian cells. Since then it has led to great
enthusiasm in the field of post-transcriptional silencing of gene expression. The RNAi mechanism was
first discovered by Caenorhabditis elegans when an exogenously introduced dsRNA caused a systemic
gene suppression [1]. It gave the idea that there might be an active intermediate that facilitated gene
silencing [2]. These intermediates included the dicer enzymes and the RNA-induced silencing complex
(RISC) which is a complex of proteins and the siRNA molecules with a highly conserved Argonaute
protein, Argonaute-2 (AGO2) as the core.

The mechanism of siRNA mediated gene silencing can be said to have two main stages namely
post-transcriptional gene silencing (PTGS) which can be classified further into two mechanisms called
the direct sequence-specific cleavage leading to translation repression and consequent degradation,
and transcriptional gene silencing (TGS) [3], both of which have a specific repression effect. In detail,
the direct sequence specific cleavage mechanism can be described as follows: Endogenous dsRNA
is identified by a ribonuclease protein called the dicer which cleaves it into small double stranded
fragments of 21 to 23 base pairs in length with 2-nucleotide overhangs at the 3′ ends. These cleaved
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products have been recognized as the small interfering RNAs (siRNAs). They consist of a passenger
strand and a guide strand, that are connected to each other by an active protein complex called
the RNA-Induced Silencing Complex (RISC). After binding to RISC, the guide strand is directed
to the target mRNA, to cleave it into small pieces that are between bases 10 and 11 relative to
the 5′ end of the siRNA guide strand by the cleavage enzyme argonaute-2. Thus, the process of
mRNA translation can be interrupted by siRNA [4–7]. The miRNA mediated pathway gene silencing
mechanism involves affecting the mRNA stability by mediating its degradation and/or by inhibiting
protein translation or interfering with the polypeptides through complimentary binding to 3′UTR of
specifically targeted mRNAs. A summary of the processes is shown in Figure 1 [8].
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Figure 1. (a) Structure of siRNA; (b) siRNA pathway; (c) miRNA pathway (Reproduced with
permission from [8]. Copyright the Royal Society of Chemistry, 2003).

This discovery was a rewarding milestone in gene therapy because it opened opportunities that
could shine some light on several molecular pathways involved in several diseases like cancer, genetic
disorders, autoimmune diseases, and viral infections. Cancer therapy, in particular, has already made
use of this new-found knowledge in designing siRNA that can inactivate multiple gene mutations
both in the oncogenes and the tumor suppressor genes that are the cause of cancer [9,10]. Following
this strategical revelation, several synthetic siRNA are being designed with desirable sequences to
apparently inhibit any target gene expression [11–13] (Figure 2 [14]).

Making use of these unique features of siRNA, several delivery systems for siRNA have entered
the clinical trial phase very recently and are being pursued as a very efficient and promising cure
for cancer (Table 1 [15]). These delivery systems mostly aim at making the siRNA more efficient at
interference with angiogenesis, metastasis, chemo-resistance of tumors, and the proliferation of cancer
cells [16]. Though these systems are showing encouraging results for prospective commercial success,
many obstacles still remain to practically apply them as therapeutics in humans.
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Table 1. Current clinical status of RNAi therapeutics for cancer treatment (Taken with permission from [15]. Copyright Elsevier, 2015).

Indications Name Delivery Route Target Delivery System Development
Phase Reference

Advanced solid tumors siRNA-EphA2-DOPC Intravenous (I.V)
injection EphA2 Lipid-based

nanoparticles Preclinical NCT01591356

Metastatic tumors or cannot be
removed by surgery APN401 I.V injection E3 ubiquitin ligase

Cbl-b Ex vivo transfection Preclinical NCT02166255

Metastatic melanoma, absence
of CNS Metastases iPsiRNA Intradermal injection LMP2, LMP7, MECL1 Ex vivo transfection Phase I, completed NCT00672542

Advanced solid tumors Atu027 I.V infusion PKN3 Lipid-based
nanoparticles Phase I, completed NCT00938574

Pancreatic ductal adenocarcinoma;
Pancreatic cancer siG12D LODER Intratumoral

implantation KRASG12D LODER polymer Phase I, completed NCT01188785

Primary or secondary liver cancer TKM-080,301 Hepatic intra-arterial
injection PLK1 Lipid-based

nanoparticles Phase I, completed NCT01437007

METAVIR F3–4 ND-L02-s0201 I.V injection HSP47 Lipid-based
nanoparticles Phase I, recruiting NCT02227459

Solid tumors; multiple myeloma;
non-Hodgkin’s lymphoma DCR-MYC I.V infusion MYC Lipid-based

nanoparticles Phase I, recruiting NCT02110563

Cancer; solid tumor CALAA-01 I.V injection RRM2 Cyclodextrin-containing
polymer

Phase I,
terminated NCT00689065

Neuroendocrine tumors;
adrenocortical carcinoma TKM 080301 I.V infusion PLK1 Lipid-based

nanoparticles
Phase I/II,
recruiting NCT01262235

Solid tumors ALN-VSP02 I.V injection KSP, VEGF Lipid-based
nanoparticles Phase I, completed NCT01158079NCT00882180
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Figure 2. Designing siRNA therapeutics for cancer treatment (Reproduced with permission from [14],
Copyright Elsevier, 2015).

2. Challenges in the Delivery of siRNA and Strategies to Address Them

siRNA therapeutics apply the concept of ‘loss-of-function approach’ to treat cancer which involves
limiting or preventing target protein expression within the cells, thus, altering the proliferation of
cancer cells. Also, siRNA is not incorporated into DNA. Hence, the genome is not presented with
the problem of permanent modification. This allows for the convenience to stop and control the
siRNA therapy at any point in time and stage of treatment which fulfils a critical factor for regulatory
and safety considerations [17]. However, the access to the full potential of siRNA therapy is limited
by its ineffective delivery to the target systems. Figure 3 [18] summarizes the extracellular and the
intracellular challenges seen while attempting the delivery of siRNA to targets.

There are several challenges presented to siRNA delivery such as efficient delivery of RNAi
therapeutics to tumors after reaching the circulation by protecting them from enzymatic degradation
and rapid renal filtration, entrapment by phagocytes, and extravasation from blood to tumor tissues.
Upon reaching the tumor, it has to overcome the vascular barrier and be internalized by cancer cells by
cellular uptake, and then escape from the endosome into the cytoplasm, and finally be released from
the siRNA payload to form RISC [18]. The major challenges and the strategies to address them are
described below.
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2.1. Administrative Barrier

Most of the cancer target sites are not available by oral route. Also, this route is not good
in maintaining intestinal stability and insufficient permeability across intestinal epithelium into
circulation [19]. Another route of administration is the subcutaneous injection which has the
advantage of bypassing the first-pass effect of the liver and access to the circulation via capillaries
or lymphatic drainage from interstitial space. However, the lipophilicity and the size of the gene
vectors are a challenge to be taken into consideration to avoid the phagocytosis of these molecules
by the phagocytic cells of the immune system. The most common modes of administration are,
thus, the intravenous or infusion injections.

2.2. Vascular Barrier

Crossing the vascular barrier is the crucial step for siRNA delivery in order for it to reach the
targeted systems. Hence, the most beneficial feature in vasculature for successful delivery of siRNA is
discontinuous sinusoidal capillaries with large openings that allow the leaking of siRNA nanocarriers
into the blood stream. These capillaries are widely found in the liver. However, the size of the
nanocarriers is a limitation here and has to be up to 100 nm. A similar morphology of capillaries
is found in tumor cells besides considerable variation of cell composition, basement membrane,
and pericyte coverage and this allows the access and the accumulation of the nanocarriers in the
tumor cells by a phenomenon called the enhanced permeability and retention (EPR) effect [20].
Thus, when targeting the tumor, four factors are important to make the most of the EPR effect
(1) internal and external blood flow of the tumor; (2) tumor vascular permeability; (3) structural
barriers enforced by extracellular matrix and tumor cells; and (4) intra-tumoral interstitial pressure [21].
Longer half-life of the siRNA therapeutics is also crucial to tap the EPR effect efficiently [15].
For targeting the non-hepatic tumor sites, care should be taken to design the therapeutics because
these capillaries have much smaller pores (60–80 nm in diameter) and the endothelium is covered with
continuous basal lamina, which can prevent the diffusion of large-scale nanoparticles. In such cases,
the delivery is evidently affected by the tightness, shape of the pores, continuous basal lamina, and the
extracellular matrix.

Further, one of the main mechanisms of removal of the siRNA therapeutics from the bloodstream
is through urine by glomerular filtration in the kidneys. The pore size of the glomerular filtration
barrier is about 8 nm. So, if the nanoparticles are designed to have a particle size of about 20 nm,
then this barrier challenge can be addressed efficiently [22–24].
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Once the siRNA therapeutics reach the blood stream, they have to be protected from the
phagocytic cells of the mononuclear phagocyte system (MPS) [25]. In this case, the important factors
to be taken care of are formulation size, surface electrostatic nature, lipophilicity, and stability of the
formulation. A large size of the formulation is undesirable since large particles are more susceptible to
phagocytosis. Excessive net charge also elicits a similar response because they tend to aggregate due to
electrostatic forces. Hence, the minimum net charge should be maintained through modification with
hydrophilic and neutral molecules like PEG to increase the stability of the formulation in the blood
stream [26]. However, care should be taken not to over-stabilize it by attaching targeting moieties so
as to prevent the uptake by cells altogether. Further, it has been observed that increased lipophilicity
allows more accumulation of the therapeutics in the tumor cells [27]. Hence, the therapeutics should
be designed accordingly. Apart from this, the fact that tumor vascularity is controlled by the oxygen
supply, some metabolites should be considered because then an increase in tumor vascularity can
increase the efficiency of the siRNA delivery system [28,29].

2.3. Cellular Barriers

The next challenge is the cellular uptake of the therapeutics. The cellular membrane is made of
negatively charged phospholipids in a bilayer consisting of functional proteins. This charge is a barrier
for siRNA nanocarrier uptake. To overcome this challenge, mostly the means of endocytosis has been
adopted [30] and in particular, targeted endocytosis such as receptor mediated endocytosis using
ligands as folate [31], transferrin [32], and aptamers [33].

The next challenge would be endosomal escape for the successful approach of the therapeutic
towards the RNA-Induced Silencing Complex (RISC) in cytoplasm. Ideally, the endosomal escape
should happen before the late endosomes fuse with the lysosomes which contain digestive enzymes,
a process which involves a gradual drop in the pH inside the endosome from the early endosomal
stage to the lysosomal fusion stage [34,35]. There are two methods to achieve this. One is the use of
cationic polymers to increase the endosomolysis by their acidification upon absorption of the protons
and destabilization of their membranes. The other method is the rupture of the lysosome by increasing
the uptake of protons, termed the proton sponge effect, such that the osmotic pressure inside the
lysosome increases eventually rupturing it and releasing the therapeutics [36]. Yet another method
is using neutrally charged ionizable lipids that become positively charged inside an endosome that
leads to their disruption to release the siRNA carriers [37]. Nevertheless, the endosomal release system
is poorly understood. So, more insight into this will open up a whole new opportunity for efficient
siRNA delivery.

2.4. Immune Response and Safety

This is one of the important challenges that siRNA delivery systems have to address. The delivery
systems are required to be non-immunogenic and they should not elicit undesirable side-effects.
They should refrain from off-target silencing of the genes in normal cells [38,39]. They should
not be identified as foreign particles by the innate immune system, especially the interferons and
cytokines, in order to prevent being destroyed before reaching the target [40,41]. This challenge can
be overcome by designing the siRNA which is between 21–23 base pairs in length [40]. The other
method is to chemically modify siRNA by 2′-O-methylation to prevent an immune response in the
body after administration.

3. Role of Nanoparticles in siRNA Delivery

In order to address the above challenges, nanoparticles are the most common choice made in
order to deliver the unstable naked siRNA to the targeted tumor sites since they protect the siRNA
from plasmatic nucleases and undesirable immune responses thus assisting in endocytosis. Further,
they can be used for targeted delivery by attaching target-specific ligands onto their surface. However,
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the utility of the nanoparticles is limited by their physicochemical properties which are summarized in
Table 2 [1].

Table 2. Physicochemical characteristics of nanoparticulate delivery systems (Taken with permission
from [1]. Copyright Elsevier, 2016).

Characteristics of Nanoparticles Benefits of Optimizing Characteristics

Shape of particles Improved rate of endocytosis allowing for a therapeutic dosage
within the target cell

Size of particles
Avoidance of clearance and filtration by renal and hepatic systems
therefore improving the half-life of the drug. This will allow it to
remain within the therapeutic dosage for a longer period

Surface properties of particles
A suitable surface characteristic will allow for improved cellular
uptake and prevent recognition from the immune system that may
result in elimination of the nanoparticle

Thermal stability To improve the stability of the conjugated siRNA to the nanoparticle
to help prevent premature degradation and release of siRNA

pH stability Allows for controlled release of nanoparticles within target cells and
improved structural stability of the nanoparticle

Quality control
To prevent toxic events and side effects as contamination is
prevented additionally it ensures the nanoparticle delivery is of a
therapeutic standard

siRNA loading efficiency
This will determine the amount of siRNA the nanoparticle is able to
carry a higher efficiency would require less nanoparticles for delivery
and hence reduced side effects

There are several advantages to the use of nanoparticles: (1) particle size is desirable for the
purpose of siRNA delivery to overcome the barriers; (2) they are inert and hence non-immunogenic;
(3) some can stimulate interferon-γ production and augment natural killer (NK) cells resulting in
activation of antitumor immunity enhancing the efficiency of the therapy altogether; (4) they have
enhanced circulation time allowing them to penetrate and accumulate in tumor cells more efficiently;
(5) they can be imaged and tracked. On the other hand, they have certain disadvantages like (1)
poor water solubility; (2) poor hydrophobicity; (3) they have limited bioaccumulation. However,
these limitations can be overcome by selection of suitable polymers. Thus, the advantages outweigh
the disadvantages.

4. Types of Nanoparticulate Delivery Systems for siRNA Therapeutics

4.1. Classification Based on the Material of Construct Used

There are broadly two types of nanoparticles that are used in siRNA delivery for discussion;
the soft/organic nanoparticles and the hard/inorganic nanoparticles. Often, the hard/inorganic
nanoparticles are coated with polymers to manipulate their solubility. Sometimes, these may
contain multiple coatings as per the requirement of the targeted delivery and hence can become
complex. Another type of nanoparticles is the theranostic nanoparticles which will be discussed here.
A simplified summary of these types of nanoparticles is shown in Figure 4 [1].
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4.1.1. Soft/Organic Nanoparticles

These are based on the usage of the organic material either from a natural or a synthetic source such
as polymers or surfactants that are self-aggregating. The typical soft/organic nanoparticles include the
liposomes, nanoemulsions, and dendrimers and polymer nanoparticles. Liposomes are the bilayer organic
lipid molecules with different charges. While neutral liposomes are preferred, they have the limitation
of poor entrapment efficiency [42]. Hence, zwitterionic 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine
(DOPC) is used.

4.1.2. Hard/Inorganic Nanoparticles

These are the inorganic and insoluble nanoparticles that are non-biodegradable and biopersistent.
Typical hard/inorganic nanoparticles are metals, metal oxides, and carbon materials (e.g., fullerenes,
nanotubes, fibers) [43] and magnetic nanoparticles consisting of Super-Paramagnetic Iron Oxide
Nanoparticles (SPIONs) [44]. Gold nanoparticles have the versatility of being used as a delivery system
or therapeutic molecules themselves since they are anti-angiogenic and have antitumor properties
that act by interfering with cellular processes. Quantum dots are the novel colloidal semiconductor
nanocrystals which possess superior optical and electronic characteristics that can have antitumor
effects by effectively delivering siRNA. Nanodiamonds are the most novel delivery systems being
studied for siRNA therapeutics delivery [45]. Carbon nanotubes, in particular those with nanoneedles
are being actively studied as delivery systems because of their cell-death-inducing activity [46].

4.1.3. Theranostic Nanoparticles

These are the nanoparticles that include two or more nanostructures to form a hybrid nanoparticle
that performs a theranostic function, i.e., both diagnostic and therapeutic functions [47,48]. This may
include the use of both organic and inorganic materials for both storage and diagnostic and therapeutic
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functions. These materials help in reducing undesirable side effects and also monitor the therapy
in vivo.

4.2. Classification Based on Function

4.2.1. Carrier Design for Stability and Release

These delivery systems aim at increasing the delivery efficiency of the system by means of
multimolecular delivery vehicles that are based on chemical structures and length of building
components (cationic moieties, non-ionic/hydrophilic moieties, and hydrocarbon tails of lipids) [37,49].
An example of such a system is the ionizable cationic lipid in SNALP containing a dimethylamino
headgroup (pKa = 6.7 ± 0.1) used to formulate siRNA as a multimolecular assembly at pH 4 where it
maintains a neutral or low cationic surface charge density to avoid non-specific disruption of plasma
membranes. This system can target specific sites based on three signals—three biological signals: redox
potential, pH, and ATP concentration. The strategy for designing these systems is covalent conjugation
of siRNA into delivery vehicles through biosignal-responsive crosslinkers; and the construction of
multimolecular assembly using biosignal responsive components. Both these systems dissociate into
building components and release siRNA. These can be designed as (1) hydrophobicity-stabilized
delivery vehicles (made of hydrophobic moieties, such as alkyl chains and cholesterol, installed into
cationic components) [18,50,51] as depicted in Figure 5 [52]; (2) delivery carrier design for selective
release of siRNA such as the redox potential responsive delivery vehicles that involves glutathione
conjugate systems [18,53–55], acidic pH responsive delivery vehicles which are based on the large
difference in the extracellular (neutral) and endosomal pH (acidic) that uses acid-labile chemistry like
the acetal, hydrazone, orthoester chemistry, etc., or by using phenylboronic acid (PBA) chemistry [18],
and ATP concentration-responsive delivery vehicles that use the ATP signals to respond and release
the siRNA as depicted in Figure 6 [18].
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4.2.2. Delivery Carrier Design for High Cell Specific Recognition

These delivery systems involve a targeted and specific delivery mechanism that transports
the siRNA therapeutics from the blood to the tumor site via blood vessels. In order to achieve
this, these systems are required to be very stable in the blood. This, in turn, is accomplished by
ligand–receptor interaction (or active targeting) with the cell-specific ligands attached on the surface of
delivery vehicles or the distal ends of neutral and hydrophilic spacers. Another method that is practiced
in this case involves subjecting the delivery vehicle to a selective exposure to the positive charges near
target cells, facilitating the binding to the cellular surface. This means that the release of siRNA from
these systems is in response (in terms of changing the multimolecular structures to release siRNA)
to the tumor environment-specific biosignals such as acidic pH and specific enzymes as depicted in
Figure 7 [18]. These systems can depend on various kinds of biosignals: (1) biological stimuli-responsive
delivery vehicles that act at acidic pH, low oxygen levels, high carbon dioxide or more protons [18,56–58]
and removal of the shielding layer due to any of these reasons [18,59–63]; (2) ligand installed delivery
vehicles which involve attachment of ligands to the surface of the carrier and the specificity depends
on the density, length/density of spacer like the GalNAc (tri-N-acetylgalactosamine) [18,64] and
PEG [18,65], charge on the ligand and the size of the vehicle.

4.2.3. Delivery Vehicles for High Endosomal Escapability

The purpose of these systems is to produce efficient endosomal esacape and endosomal
acidification. This is accomplished by the addition of groups like secondary/tertiary amines or
histidine, PEI (polyethylenimine) (even though it is cytotoxic), etc., on the delivery vehicles [14,58–60].
These systems act by a proton sponge mechanism [18,36].
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4.2.4. Delivery Carrier Design in Other Categories

These systems involve miscellaneous strategies [66–68] like (1) the layer-by-layer delivery
vehicle that is applied mostly for local delivery (though they are limited by their size) [18,69,70];
(2) calcium phosphate-formulated delivery vehicles that involve the co-deposition of inorganic
molecules on the delivery systems for better size control and higher siRNA loading [18,71–75]; (3) Gold
nanoparticle-templated delivery vehicles that use thiolated gold particles on the delivery systems to
release siRNA [18,76,77], and mesoporous nanoparticles for siRNA delivery [78]. These systems have
been comprehensively depicted in Figure 8 [79–81].
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concentration (C) (Reproduced with permissions from [79–81]. Copyright ACS Nano, Elsevier and
Springer, 2012, 2015 and 2013, respectively).

5. Conclusions

Cancer is still the second leading cause of deaths all over the world. There have been many
advances in the gene sequencing of cancer cells that have led to the development of synthetic siRNA
for delivering personalized medicine. Since their discovery, siRNAs therapeutics have been pursued
actively because of their high specificity, easy modification, and unlimited therapeutic targets. However,
being unstable in the blood, this presents several challenges with designing delivery systems for
administration to the target sites. These challenges being both intracellular and extracellular are



Nanomaterials 2017, 7, 77 13 of 17

unavoidable. Because of these challenges, the utilization of this versatile therapeutic molecule to its
full potential is still a long way away. Development of the various nanoparticulate systems described
in this review, besides the other delivery systems that are being developed beyond the nanoparticulate
systems, is an illustration of the extensive research progress taking place to accomplish targeted
delivery of siRNA. Nanoparticulate systems have proven their worth and are widely recognized as
the best means to achieve safe and targeted delivery of siRNA. However, there is much progress still
needed for curing cancer using siRNA, especially in addressing the challenges discussed in this review.
Continued research to understand the barriers that are still not fully known is one of the first steps that
must be undertaken.
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