Highly Enhanced Photoreductive Degradation of Polybromodiphenyl Ethers with g-C$_3$N$_4$/TiO$_2$ under Visible Light Irradiation

Weidong Ye 1, Yingying Shao 1, Xuefeng Hu 2, Chulin Liu 1 and Chunyan Sun 1,*

1 Department of Chemistry, Shaoxing University, Shaoxing 312000, Zhejiang, China; zipijyeweidong@163.com (W.Y.); hmilyariel@icloud.com (Y.S.); liuchunlin@usx.edu.cn (C.L.)

2 Key laboratory of Coastal Zone Environmental Process and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, Shandong, China; xfhu@yic.ac.cn

* Correspondence: chunyansun74@gmail.com; Tel./Fax: 86-575-8834-1521
Supporting Information

Figure S1. The structure of BDE209

Figure S2 (a) SEM image of g-C₃N₄; (b) TEM image of g-C₃N₄

Figure S3. XPS spectra of C1s (a), N1s (b), Ti2p (c) and O1s (d) for 0.02-g-C₃N₄-TiO₂
Figure S4 GC-μECD chromatograms of degradation products of BDE209 by 0.02-g-C₃N₄-TiO₂ in different irradiation times.