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Abstract: To develop treatments for neurodegenerative disorders, it is critical to understand the
biology and function of neurons in both normal and diseased states. Molecular studies of neurons
involve the delivery of small biomolecules into cultured neurons via transfection to study genetic
variants. However, as cultured primary neurons are sensitive to temperature change, stress, and
shifts in pH, these factors make biomolecule delivery difficult, particularly non-viral delivery. Herein
we used oscillating nanomagnetic gene transfection to successfully transfect SH-SY5Y cells as well
as primary hippocampal and cortical neurons on different days in vitro. This novel technique has
been used to effectively deliver genetic material into various cell types, resulting in high transfection
efficiency and viability. From these observations and other related studies, we suggest that oscillating
nanomagnetic gene transfection is an effective method for gene delivery into hard-to-transfect
neuronal cell types.

Keywords: magnetic nanoparticles; transfection; SH-SY5Y; hippocampal neurons; cortical neurons;
non-viral gene delivery; nanomagnetic gene transfection; biomagnetics; gradient magnetic field;
permanent magnets

1. Introduction

Neurons are key units of the central nervous system (CNS) which process and transmit
information through electrical and chemical signalling [1,2]. Dysfunction of these critical physiological
processes can lead to a host of neurological diseases such as Alzheimer’s disease (AD) [3], Parkinson’s
disease (PD) [4], epilepsy [5], and multiple sclerosis [6]. To better understand the biology and function
of neurons in the brain, current research involves the delivery of small biomolecules such as DNA, RNA
or peptides into cultured neurons by means of transfection to enhance or silence the expression of genes
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or proteins [7–11]. However, primary neurons in culture are very sensitive to temperature changes,
stress, and pH changes [12–14], which creates problems for the delivery of small biomolecules [15].

Hence, neuronal cell lines are used, for example SH-SY5Y, which is a cell line derived from
human neuroblastoma, which can be differentiated into neuronal-like cells with properties of
adult neurons [16,17]. SH-SY5Y has served as a model for studying neuron biology, especially
in neurodegenerative diseases such as AD and PD [18–20], and transfection experiments have
been conducted on SH-SY5Y to understand neuron damage and degeneration [21], growth and
regeneration [22], and the role of nuclear location sequences in non-viral transfection [23].

Herein, we demonstrate the successful transfection of the cell line SH-SY5Y, along with primary
rat hippocampal and cortical neurons, using magnetic nanoparticles (MNPs) and an oscillating magnet
array with no impact on cell viability.

2. Results

2.1. Magnetostatic Calculation

The oscillating magnet array, shown in Figure 1A, is made up of a 96-well alternate pole magnet
array that oscillates in a horizontal/lateral motion at a pre-determined displacement and frequency.
While the use of an oscillating magnet array has been shown to successfully transfect a range of cell
types with little detrimental effect on cell viability [24–30], this study determined whether this method
can be used to successfully transfect sensitive neuronal cell lines and primary neurons.

Finite element method magnetics (FEMM)-based magneto static calculation data along with a
magnetic field density |B| (Tesla) distribution contour plot are provided in Figure 1B. The magnetic
field density |B| on the x axis and y axis (marked with the red line above the magnet in Figure 1B)
over a distance is provided in Figure 2A,B, respectively. The magnetic field amplitude for the magnet
array is 320 ± 25 mT and the field gradient ranges between 100–200 T/m (center to edge of the well) at
the cell surface.

Figure 1. Oscillating magnet array−based nanomagnetic gene transfection experimental setup.
(A) Representation of a 96-well oscillating magnet array–based nanomagnetic transfection setup using
NdFeB magnetic array; (B) Dimensions of the permanent magnets and magnetostatic (vector-potential)
algorithm based magnetic field density |B| distribution (T) contour plot for the NdFeB magnetic array.
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Figure 2. Magneto-static (vector potential) algorithm–based numerical calculations: (A) 2D plot of the
magnetic field for x axis (marked in red line horizontal above the magnet array in Figure 1B); (B) 2D
plot of the magnetic field for y axis (marked in red line vertical above the magnet array in Figure 1B).

2.2. Transfection of Undifferentiated SH-SY5Y Cells

To optimise the transfection of SH-SY5Y cells, various Green Fluorescent Protein (GFP) to Magnetic
Nanoparticles (MNP) ratios (GFP: MNP), frequencies and displacements of the magnet array were
investigated. A ratio of 1:1 of GFP to PolyMag was found to give the maximum transfection results
(data not shown) and the transfection efficiency varied when subjected to an oscillating magnet of
varying frequency, as demonstrated in Figure 3. Viability for SH-SY5Y cells (3 Hz, 0.2 mm; 0.2 µL
PolyMag: 0.2 µg DNA) was 82.33% ± 3.88%.

Figure 3. Higher gene expression in undifferentiated SH-SY5Y cells. (A) Fluorescent images of
GFP-expressing SH-SY5Y cells transfected using (I) an oscillating magnet array (Frequency = 2 Hz;
Displacement = 0.2 mm) or (II) a cationic lipid–based reagent; (B) Bar chart showing the percentage of
GFP-expressing cells 48 h after transfection with different oscillating magnet array settings. FACS data
shown are the mean ± SD of (n = 3), respectively.

2.3. Gene Delivery and Prolonged Expression in Primary Hippocampal Neurons on Different Days In Vitro

To ensure that only primary neurons were transfected within the disassociated hippocampal
tissue, Synap 1, a plasmid with a GFP cassette that is driven by the neuron-specific Synapsin I (SYNI)
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promoter, was used [31]. Rat hippocampal neurons isolated on different days in vitro, i.e., Days In Vitro
(DIV) 7, DIV 14 and DIV 21, were successfully transfected by oscillating nanomagnetic gene transfection
without damaging the neurite growth, as seen in Figure 4. The high level of GFP expression persisted
up to 48 h (Figure 4B,C,E,F) or 96 h (Figure 4A,D) in primary hippocampal neurons. The transfection
efficiency and viability for primary hippocampal neurons were 15% ± 5.00% and 75.00% ± 5.00%
(n = 3), respectively.

Figure 4. Neuron-specific gene delivery methods in primary hippocampal cells. Images of Synap 1
plasmid expressing primary neurons (2 × 104 cells/well). Fluorescent and phase contrast images
of transfected DIV 7 (A,D), DIV 14 (B,E) and DIV 21 (C,F) mature neurons using an oscillating
magnet array (Frequency = 2 Hz; Displacement = 0.2 mm), imaged at 96 h (A,D) or 48 h (B,C,E,F)
post transfection.

2.4. Gene Delivery by Oscillating Nanomagnetic Gene Transfection in Primary Cortical Neurons

Primary cortical neurons were also successfully transfected as demonstrated using mature cortical
neurons transfected at DIV 1 (Figure 5A,C) and DIV 5 (Figure 5B,D). The transfection efficiency
and viability (2 Hz, 0.2 mm; 0.1 µL NeuroMag, 0.05 µg DNA) of primary cortical neurons were
10.00% ± 5.00% and 75.00% ± 5.00% (n = 3), respectively. Controls containing DNA only and
NeuroMag only showed no transfection and their viability was comparable to the control containing
media only (data not shown).

Figure 5. Gene delivery by oscillating nanomagnetic gene transfection in primary cortical neurons.
Images of pmaxGFP plasmid expressed in primary neurons using fluorescence microscopy and its
corresponding Hoechst 33,342 stained counterpart of transfected DIV 1 (A,C) and DIV 5 (B,D) mature
neurons were taken 48 h post transfection.
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3. Discussion

Previously, the combination of nanomagnetic and lipid reagent–based gene transfection
demonstrated advantages such as cost efficiency, minimised complexity (unlike viral constructs),
long-term gene expression and the ability to transfect various plasmid constructs in both young
and mature neurons (from DIV 5 to DIV 21) [7]. Recently, motor neurons [8], cortical neurons [32]
and cerebellar granule neurons [33,34] were transfected using NeuroMag, though most studies
focused on individual cells. An alternative and well-characterised method is the use of the neuronal
cell line SH-SY5Y, which is able to undergo differentiation from precursor cells to neuroblastoma
cells [22,35–37].

In this study we investigated the impact of an oscillating magnetic field on magnetic nanoparticles
coupled to plasmid DNA during the transfection of both the neuron-like cell line SH-SY5Y and primary
neurons. Oscillating nanomagnetic transfection improved the transfection efficiency and expression
of the reporter protein with low cytotoxicity and non-interference with the cell physiology, such as
differentiation and neurite growth, in both cell lines and primary neurons. These results are similar to
studies on other cell types using the same technology [23–28,30,38–40]. It is also interesting to note that
this oscillating nanomagnetic gene transfection can be used for transfecting rat hippocampal neurons
with a large plasmid, leading to a prolonged and high gene expression [41].

While the increase in transfection efficiency using the oscillating magnet array at different
frequencies was modest (compared to a static magnet array), this was unsurprising as we have
observed it in astrocytes [27] and adult cardiomyocytes [24]. However, we and others have shown that
this is highly dependent on the cell type. Neural stem cells [40], oligodendrocyte precursor cells [30],
cardiac progenitor cells [24], human umbilical vein endothelial cells (HUVEC) [26], mouse embryonic
fibroblasts (MEF) [26], MG-63 osteoblasts [38], mesenchymal stem cells (MSC) [39] and astrocytes [27]
all showed a frequency-dependent increase in transfection efficiency.

Furthermore, we do not yet have an explanation for the underlying biophysical interaction
between the surface-functionalised magnetic nanoparticles and the oscillating magnet field due to
particle agglomeration, the magnetic susceptibility of surface-functionalised nanoparticles and the
viscous damping phenomenon (data not shown). However, magnetic nanoparticles will experience
torque in a homogenous magnetic field, but will undergo translational movement when exposed to
a field gradient. In addition, the field gradient is influenced by the magnet array displacement [42].
We propose two possibilities to explain the high gene expression. There is either a high level of plasmid
DNA being introduced per cell, leading to a higher level of protein expression, or the DNA-magnetic
nanoparticle complexes have redirected the cell machinery towards higher protein production.

Oscillating nanomagnetic gene transfection has clinical potential, as shown in the normal
expression of stem cell markers and axon/neurite growth in transfected and differentiated neural stem
cells and dorsal root ganglion neurons, respectively [40,41]. Furthermore, transfected oligodendrocyte
stem cells are not affected in migration, division and integration after transplantation into a
3 dimensional tissue culture model [30].

4. Materials and Methods

4.1. Materials

Hoechst 33342, antibiotics or other media supplements were purchased from Sigma (Dorset, UK).
Lipofectamine 2000 from Invitrogen (Paisley, UK) and all cell culture plastics were from Costar
(Appleton Woods (Birmingham, UK). Hams F12, MEM, neuro basal medium, foetal bovine serum
(FBS), other kits and all other chemicals of the highest purity available were from either Neuromics
(Edina, MN, USA) or Biosera (East Sussex, UK). PolyMag and NeuroMag are magnetic nanoparticles
surface functionalised with transfection-enhancing materials and contains a magnetite core. Both were
from Ozbioscience (Marseilles, France). PolyMag is 100–250 nm in hydrodynamic diameter and has



Nanomaterials 2017, 7, 28 6 of 10

been successful in transfecting SH-SY5Y cells [23]. PolyMag is surface functionalised with a proprietary
polyethylenimine derivative with positive zeta potential [39,43–45].

NeuroMag is 140–200 nm hydrodynamic diameter in size [27,46] and was chosen for transfecting
primary hippocampal and cortical neurons as it has been used successfully in transfecting
astrocytes [27], cerebellar granule cells [33], dorsal root ganglia [47], and motor neurons [8].
Like PolyMag, it has a proprietary coating that is positively charged [27]. The rationale for using
both particles is that the study was aimed at evaluation of magnet array technology. Our goal was
to demonstrate that the technology works efficiently with different commercially available magnetic
nanoparticles that have been widely used to transfect neurons, rather than using NeuroMag alone.

4.2. Cell Culture

Human neuroblastoma cells (SH-SY5Y) (No. CRL-2266; American Type Culture Collection,
Manassas, VA, USA) were maintained as previously described [48]. SH-SY5Y were seeded at a density
of 1 or 2 × 104 cells in 100 µL medium onto 96-well plates in Ham’s F12:MEM (1:1) supplemented
with 10% FBS, 2 mM L-glutamine, 100 U penicillin and 0.1 mg/mL streptomycin. Both cell lines
were incubated at 37 ◦C, 5% CO2, for 24 h before performing transfection experiments. Primary rat
hippocampal and cortical neurons were obtained from Neuromics (Edina, MN, USA) and disassociated
using papain disassociation kit (Worthington, NJ, USA) according to the manufacturer’s instructions.
Isolated neurons were maintained using neurobasal medium supplemented with 5% FBS, 0.5 mM
Glutamax, 2% B27 supplement, 25 µM L-glutamine and seeded onto poly-D-lysine–coated cells
culture plates.

4.3. DNA Constructs

Eukaryotic expression vectors pEGFP-N1 (4.7 kb) and pmaxGFP (3.5 kb) contain cytomegalovirus
(CMV) promoters which drive overexpression for the gene encoding green fluorescence protein, and
are purchased from Clontech (Mountain View, CA, USA) and Lonza (Slough, UK), respectively. Synap 1
(11 kb) and Neuron specific SYN1 promoter driven gene encoding green fluorescent protein were
donated by NIH, USA. Plasmid DNA was prepared using the Qiagen Endo Free Plasmid Purification
kit (Qiagen, Crawley, UK), and maintained in endonuclease-free water (Sigma, Dorset, UK) at −80 ◦C.

4.4. Transfection of Neurons (CN)

4.4.1. Nanomagnetic Gene Transfection

To prepare transfection complexes, 0.3 or 0.05 µg pEGFP-N1, respectively, were diluted in
20 µL serum-free media, added to 0.3 µL PolyMag or 0.15 µL NeuroMag and mixed. After 20 min,
complexes were added drop-wise to cells; the ratio of DNA: MNP in these experiments were 1:1
for SH-SY5Y. The final concentration of NeuroMag for neuron experiments was 0.1 µL per well
(0.7 µL/mL medium); this concentration found to have no effect on cell viability [27]. Control wells
comprised of un-transfected cells. An alternate pole magnet array for 96-well tissue culture plate
was used for both static and oscillating transfection. For oscillating transfections, the magnet array
was controlled using the Magnefect-nano II system (nanoTherics, Stoke-on-Trent, UK) as shown in
Figure 1A. The frequency of oscillation was between 1–3 Hz with displacement between 0.2–0.3 mm.
Plates were incubated in the presence of magnetic field conditions for 30 min. After transfection, cells
were incubated for 48 h at 37 ◦C, 5% CO2 before analysis.

4.4.2. Lipid-Based Transfection

Lipid-based transfections were performed in serum-free medium using 0.1 µg of pEGFP-N1
and 0.3 µg of Lipofectamine 2000 per well following the manufacturer’s recommended protocol.
Mock-transfection or serum free medium were used as controls. After transfection cell culture plates
were transferred back to the incubator for 48 h before analysis.
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4.5. Flow Cytometry

Transfected cells were washed in 0.5% bovine serum albumin and phosphate-buffered saline (PBS)
and analysed for the relative fluorescence of gated cells, using a FACSort analyser (Becton, Dickinson
and Company, Oxford, UK). Transfection efficiency was determined by the percentage of gated cells in
the FL1 channel over the total number of gated cells.

4.6. Fluorescent Microscopy

GFP expression in cells was analysed by microscopy using a fluorescent microscope
(IX71-Olympus, Essex, UK). A minimum of three images were captured at fixed exposure settings, and
an average percentage of the proportion of GFP-expressing cells related to the total number of cells
was determined (transfection efficiency) using Image J (NIH, Bethesda, MD, USA).

4.7. Cell Viability Assay

CytoTox-ONETM homogenous membrane integrity assay (Promega, Southampton, UK) provided
the measure of released lactate dehydrogenase (LDH) through damaged membrane of dead cells
and the assay was performed according to manufacturer’s instruction. Luminescence was recorded
using a plate reader (BioTek, Bedfordshire, UK). Viability data is expressed as a percentage using the
following formula: Percentage viability = 100 − (100 × (Experimental − Background Luminescence)/
(Maximum LDH release − Background Luminescence)).

4.8. Statistics

If not stated otherwise, the data are presented as means ± SD of values from at least three
experiments. Analysis of the significance of the differences between groups of data was performed
by one-way ANOVA followed by Bonferroni post hoc test (multiple comparison test), p > 0.05 was
considered as not significant.

4.9. Numerical Model and Magnetic Field Calculation

The magnetic field |B| numerical calculations were performed using Finite Element Method
Magnetics (FEMM 4.32, Waltham, MA, USA). In order to model magnetic field density |B| distribution
from the permanent magnets, i.e., alternate pole magnet array arranged in a 96-well tissue culture
plate format. We have applied the magnetostatic solution solver algorithm via the Finite Element
Method model with Asymptotic Boundary Condition (ABC) conditions. In our case the material
was Neodymium-Iron-Boron (NdFeB) with an energy product of 42 megaGauss Oersteds (MGOe).
Dimensions of the permanent magnets can be seen in Figure 2B.

5. Conclusions

We were able to successfully transfect neuronal cells using this novel technique with little/no
detrimental effect on the viability. This is key to effective in vitro and in vivo gene delivery in a
physiological and clinical setting and further multidisciplinary research is required to make substantial
progress in this area.
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