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Abstract: Earth-abundant and low-cost catalysts with excellent electrocatalytic hydrogen evolution
reaction (HER) activity in alkaline solution play an important role in the sustainable production of
hydrogen energy. In this work, a catalyst of Ni(P, O)x·MoOx nanowire array on nickel foam has been
prepared via a facile route for efficient alkaline HER. Benefiting from the collaborative advantages
of Ni(P, O)x and amorphous MoOx, as well as three-dimensional porous conductive nickel scaffold,
the hybrid electrocatalyst shows high catalytic activity in 1 M KOH aqueous solution, including
a small overpotential of 59 mV at 10 mA cm−2, a low Tafel slope of 54 mV dec-1, and excellent
cycling stability.

Keywords: Ni(P, O)x·MoOx nanowire array; synergistic effect; electrocatalyst; alkaline hydrogen
evolution reaction

1. Introduction

Exploring new sustainable energy resources and clean energy carriers to replace the traditional
fossil fuels is one of the most important challenges of the 21st century. Hydrogen is considered as
the most promising energy carrier for sustainable energy applications due to its outstanding energy
storage density, environmental friendliness, and renewability [1–3]. Electrochemical water splitting is
an important component of several hydrogen generation strategies. However, an efficient catalyst is
required to reduce the energy barrier of the hydrogen evolution reaction (HER) [4]. So far, the most
effective electrocatalysts for HER are Pt group materials, but the scarcity and high cost of these noble
metals significantly limit their wide utilization [5]. Herein, the development of low-cost and efficient
HER electrocatalysts based on earth-abundant species is of great importance [6–8].

Up to now, various non-precious metal-based materials (e.g., Ni, Co, Fe, Cu, W, and Mo) have
been intensively synthesized as promising HER catalysts with high performance [9–12]. Among these
alternatives, crystalline MoO2 has been identified as an excellent candidate owing to its good
electric conductivity and high electrocatalytic activity [13–15]. It is noted that most of the reported
non-precious electrocatalysts are based on crystalline compounds. In recent years, a growing class of
amorphous materials have emerged as more efficient electrocatalysts compared with their crystalline
counterparts [16–20]. However, the amorphous catalysts suffer from poor cycling stability caused by
slow dissolution of the catalyst components during long-term test, thus resulting in easy degradation in
the electro-activity [21,22]. To mitigate this critical problem, a large number of studies have shown that
coupling different functional species can generate a strong synergistic effect to significantly improve

Nanomaterials 2017, 7, 433; doi:10.3390/nano7120433 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0001-5582-0573
https://orcid.org/0000-0002-9416-1731
http://dx.doi.org/10.3390/nano7120433
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2017, 7, 433 2 of 9

the performance [22]. It is important to note that Ni-based electrocatalysts exhibit excellent HER
catalytic activity in alkaline media due to the appropriate OH-Ni2+δ (0 ≤ δ≤ 1.5) bond strength [23,24].
Therefore, it is highly desirable and interesting to combine Ni-species with MoO2 to synergistically
achieve substantial improvements in electro-activity and durability.

Herein, we highlight a Ni(P, O)x·MoOx nanowire array which grows directly on a nickel foam
support (Ni(P, O)x·MoOx NA/NF) for a highly efficient electrocatalyst which exhibits preferable
HER activity. The direct integration of nanowire array onto the Ni foam not only simplifies the
electrode preparation processes, but also ensures the tight connection between electrode framework
and active species, resulting in enhanced mechanical stability. In addition, the commercial nickel
foam acts as a three-dimensional (3D) macroporous conductive substrate that facilitates facile charge
transfer, electrolyte diffusion, and gas bubble release. Consequently, benefiting from the collaborative
advantages of Ni-species and amorphous MoOx, the as-prepared Ni(P, O)x·MoOx NA/NF electrode
shows a remarkable electrocatalytic activity with a low overpotential of 59 mV to attain a current
density of 10 mA cm−2 and superior stability for at least 24 h in an alkaline environment, thereby
demonstrating a highly-efficient HER catalyst.

2. Results and Discussion

The self-supported Ni(P, O)x·MoOx nanowire array is fabricated on a commercial Ni foam by a
facile template-free hydrothermal process in combination with a subsequent in situ phosphorization
treatment. Figure 1 schematically illustrates the typical two-step preparation process. In the first
step, the Ni(P, O)x·MoOx precursor (i.e., NiMoO4·xH2O) is grown on the 3D porous skeletons of
the nickel foam by a hydrothermal reaction. In the second step, the Ni(P, O)x·MoOx catalyst is
obtained through a solid-state phosphorization process between the NiMoO4·xH2O precursor and
NaH2PO2. The precursor is thermally transformed to crystalline NiMoO4 nanowire array supported
on the Ni foam (NiMoO4 NA/NF), during which a simple dehydration reaction occurs. As can be
seen from the scanning electron microscopy (SEM) image (Figure 2a), high-density NiMoO4 NA
spreads uniformly over the nickel foam skeletons. A closer observation (Figure 2b) indicates that the
diameter of the nanowire is about 210 nm, and the length is more than 6 µm. After phosphidation,
the 1D nanowire array is maintained well from the precursors (Figure 2c,d), and the diameter of the
Ni(P, O)x·MoOx nanowires is similar to the NiMoO4. Transmission electron microscopy (TEM) was
employed to further depict the as-prepared Ni(P, O)x·MoOx. Figure 2e shows the corresponding TEM
image of Ni(P, O)x·MoOx NA/NF, further identifying the preservation of the 1D morphology after
phosphidation. The high-resolution TEM (HRTEM) image (Figure 2f) shows no obvious evidence of
lattice fringes, suggesting that the as-synthesized Ni(P, O)x·MoOx is amorphous or of poor crystallinity.
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Figure 1. Schematic illustration of the formation processes of the Ni(P, O)x·MoOx nanowire array
which grows directly on a nickel foam support (Ni(P, O)x·MoOx NA/NF).

The phase structure of the as-prepared samples was examined by X-ray diffraction (XRD) analysis.
As shown in Figure 3, the distinct diffraction peaks with 2θ at around 14.3◦, 25.4◦, 28.9◦, 32.6◦, 43.9◦, and
47.5◦ correspond to the (002), (112), (220), (222), (330), and (204) crystal planes of NiMoO4, respectively
(JCPDS No. 86-0361) [25,26]. Compared with the crystalline NiMoO4, the Ni(P, O)x·MoOx sample
exhibits weak diffraction peaks, indicating that the phosphidation process results in a significant
decrease in the crystallinity. The main peaks can be assigned to nickel phosphates (Ni2P4O12, JCPDS
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No. 76-1557). The absence of Mo-related peaks demonstrates that the Mo-based species are amorphous
in the as-synthesized Ni(P, O)x·MoOx NA/NF [27].Nanomaterials 2017, 7, 433  3 of 9 
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be resolved into two sets of peaks corresponding to the Mo6+ and Mo4+ species, and the ratio between 
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Figure 3. XRD pattern of the NiMoO4 NA/NF and Ni(P, O)x·MoOx NA/NF.

X-ray photoelectron spectroscopy (XPS) measurement was carried out to investigate the surface
composition and the oxidation state of the Ni(P, O)x·MoOx NA/NF. The survey spectra show that the
Ni(P, O)x·MoOx NA/NF is composed of Mo, Ni, P, O elements (Figure 4a) and the atomic percentage
of P in the product is 17.16%. The Ni 2p3/2 high-resolution spectrum (Figure 4b) exhibits two main
peaks at binding energies of 856.9 and 862.1 eV, which can be assigned to the Ni–O bond and the
satellite peak, respectively [28]. The Mo 3d spectrum of the Ni(P, O)x·MoOx NA/NF (Figure 4c) can be
resolved into two sets of peaks corresponding to the Mo6+ and Mo4+ species, and the ratio between
the Mo6+ and Mo4+ in the composite is 0.57. The presence of Mo4+ species is probably attributed to the
reduction of the Mo6+ precursor during phosphidation process [29]. For the profile of P 2p, the sample
(Figure 4d) only shows a peak at a binding energy of 134.4 eV, which represents the P–O bond [30].
The high-resolution O 1s spectrum (Figure 4e) can be fitted into two peaks at 531.7 and 533.1 eV, which
can be ascribed to the metal–oxygen (M–O) and P–O bonds, respectively [28].
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The HER performance of the Ni(P, O)x·MoOx NA/NF was examined in 1 M KOH aqueous
solution. For comparison, commercial Pt/C (20 wt % Pt/XC-72) and NiMoO4 NA/NF were
also evaluated. Figure 5a shows the IR-corrected linear sweep voltammetry (LSV) curves.
The Ni(P, O)x·MoOx NA/NF electrode exhibits a low overpotential of 59 and 185 mV to reach a
current density of 10 and 100 mA cm−2, respectively. In sharp contrast, the control NiMoO4 NA/NF
electrode requires much higher overpotentials of 219 and 324 mV to achieve the same current densities.
The lower overpotential of the Ni(P, O)x·MoOx NA/NF electrode indicates a significant improvement
in the HER catalytic property. Impressively, the overpotential is almost comparable to the commercial
Pt/C electrode, demonstrating that the present electrode material may serve as a practical cathode for
the high-efficiency production of hydrogen.
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Figure 5b shows the corresponding Tafel plots. It is worth noting that the Tafel slope of
Ni(P, O)x·MoOx NA/NF is about 54 mV dec−1, which is only half of the control NiMoO4 NA/NF
electrode (108 mV dec−1). This low Tafel slope indicates that the HER occurs on the Ni(P, O)x·MoOx

NA/NF electrode following the Volmer–Heyrovsky mechanism, and the rate-limiting step is the
electrochemical recombination with an additional proton [9]. More importantly, the Ni(P, O)x·MoOx
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NA/NF catalytic activity is superior to most Mo-based HER electrocatalysts reported so far (Table 1).
In addition, the amount of catalytically active surface area on NiMoO4 NA/NF and Ni(P, O)x·MoOx

NA/NF electrodes are roughly estimated from the electrochemical double-layer capacitance (Cdl) by
measuring cyclic voltammetry (CV) curves at different scanning rates (Figure 6a,b). The determined
Cdl for Ni(P, O)x·MoOx NA/NF (89.9 mF cm−2) is much higher than NiMoO4 NA/NF (10.9 mF cm−2)
(Figure 6c), suggesting a larger surface active area and more exposed active sites [10]. Figure 6d shows
that the charge-transfer resistance of the Ni(P, O)x·MoOx NA/NF electrode (3.4 Ω) is smaller than that
of the NiMoO4 NA/NF (3.9 Ω), indicating rapid charge transfer. The large electro-active surface area
along with the enhanced charge transfer kinetics of the Ni(P, O)x·MoOx NA/NF are believed to be
responsible for the associated higher HER catalytic activity.
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Table 1. Comparison of HER performance for Ni(P, O)x·MoOx NA/NF with Mo-based electrocatalysts.

Catalyst [a] Overpotential at
j = 10 mA cm−2 (mV)

Tafel Slope
(mV dec−1) Electrolyte Reference

MoO2@PC-RGO 64 41 0.5 M H2SO4 [15]
MoP/Ni2P/NF 75 100 1 M KOH [28]

Ni/Mo2C 179 101 1 M KOH [31]
NiMoN-550 89 79 1 M KOH [32]
Mo2C@NC 60 60 1 M KOH [33]

MoP NA/CC 80 83 1 M KOH [34]
MoS2/MoO2 240 76 0.5 M H2SO4 [35]
MoO2/RGO — 68 0.5 M H2SO4 [36]

MoP|S 64 50 0.5 M H2SO4 [37]
Ni(P, O)x·MoOx NA/NF 59 54 1 M KOH This work

[a] PC-RGO: phosphorus-doped carbon-reduced grphene oxide; NC: nitrogen-rich carbon; CC: carbon cloth.
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Good catalytic stability is of critical significance for an electrocatalyst when it comes to
potentially practical implementation, particularly considering that the HER catalysts work in harsh
environments [8]. The Ni(P, O)x·MoOx NA/NF electrocatalyst was first evaluated via a recycling test
using LSV method. As shown in Figure 7a, the LSV curves are almost overlapped with a slight loss of
the cathodic current densities, indicating a negligible active degradation before and after 2000 scanning
cycles. The excellent cycling stability is further validated by the time dependence of the current density
curve at a constant overpotential of 60 mV (Figure 7b). The Ni(P, O)x·MoOx NA/NF manifests a stable
catalytic current over 24 h, confirming the long-term durability of the electrocatalytic activity.

It is believed that the high alkaline HER performance of the Ni(P, O)x·MoOx NA/NF can be
attributed to the combination of compositional and geometric advantages: (1) Ni2+ is of great benefit for
the adsorption of hydroxyl species, while amorphous MoOx provides catalytically active sites for the
adsorption of H* intermediate and further facilitates the subsequent formation of H2. The synergistic
cooperation greatly reduces the energy barriers of the initial water decomposition and the subsequent
step of H2 generation. (2) Coupling Ni-species and amorphous MoOx generates a strong synergistic
effect to significantly improve the stability. (3) The nanowire array offers a larger surface active area
with more exposed active sites. (4) The 3D porous and conductive nickel foam not only effectively
increases the contact area between active catalyst and electrolyte, but also serves as a robust skeleton
to provide strong mechanical adhesion and electric connection to the nanowire array, thereby ensuring
facile charge and mass transport, gas bubble release, and good electrode structure for long-term test.
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3. Materials and Methods

3.1. Synthesis of Ni(P, O)x·MoOx NA/NF

All chemical reagents were of analytical grade and used as received without further purification.
The Ni foam with a thickness of 1.6 mm and dimensions of 2 × 4 cm2 was sonicated in diluted
hydrochloric acid (1 M), acetone, deionized water, and ethanol for 10 min, respectively. In a typical
synthetic process, 1 mmol Ni(NO3)2·6H2O and 1 mmol Na2MoO4·2H2O were dissolved in 30 mL H2O
to form a clear solution. Subsequently, the solution and purified Ni foam were transferred into a 50 mL
Teflon-lined stainless autoclave, which was sealed and heated at 160 ◦C for 6 h in an oven. After the
reaction, the resulting light-green Ni foam was rinsed with deionized water and ethanol, then the
sample was dried at 60 ◦C for overnight.

In the next step, the obtained NiMoO4·xH2O NA/NF precursor and 10 mmol NaH2PO2 were
placed at two separate positions of the tube furnace with the NaH2PO2 at the upstream side.
Subsequently, the samples were heated at 400 ◦C for 120 min with a ramp rate of 2 ◦C min−1 under
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flowing nitrogen. After cooling to room temperature naturally, the resulting electrode was obtained.
The mass loading of the as-prepared Ni(P, O)x·MoOx NA/NF on the Ni foam was ~5.4 mg cm−2.
The synthesis of NiMoO4 NA/NF was the same as Ni(P, O)x·MoOx NA/NF, just without NaH2PO2.

3.2. Material Characterization

The crystallographic phase of the products was examined by X-ray diffraction (XRD) with Cu
Kα radiation (λ = 0.15418 nm) (X’Pert Pro MPD, Philips, Almelo, The Netherlands). The morphology
was characterized by field emission scanning electron microscopy (FE-SEM, FEI Nano SEM 450, FEI,
Portland, OR, USA) and transmission electron microscopy (TEM, FEI Tecnai F30G2, FEI, Portland,
OR, USA). The surface chemistry and elemental analysis of the sample were characterized by X-ray
photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Scientific, Waltham, MA, USA).

3.3. Electrochemical Measurements

The catalytic performances of the electrocatalysts were investigated by using an electrochemical
workstation (Solartron 1260 + 1287, Bognor Regis, West Sussex, UK) in a three-electrode system.
The Ni(P, O)x·MoOx NA/NF was used as the working electrode; a graphite rod and the saturated
calomel electrode (SCE) were used as the counter and reference electrode, respectively. All of the
finial potentials were calibrated to a reversible hydrogen electrode (RHE). The polarization curves
were corrected with IR compensation. The working electrodes were activated before the measurement
by cyclic voltammetric scans with a scan rate of 50 mV s−1. The HER performances of the obtained
electrocatalysts were tested from 0.2 to −0.4 V (vs. RHE) in 1 M KOH aqueous solution by LSV with a
scanning rate of 2 mV s−1. Electrochemical impedance spectroscopy (EIS) was carried out at −0.2 V
(vs. RHE) over a frequency range from 100 kHz to 0.01 Hz with a 10 mV AC dither. To determine the
catalytically active surface area of the products, the electrochemical double-layer capacitance (Cdl) of
the electrodes was estimated by using CV method in a non-Faradaic range of 0.3–0.4 V (vs. RHE) at
various scan rates. A linear relationship between the current densities at 0.35 V (vs. RHE) and scan
rate can be plotted to obtain Cdl, the value of which is half of the resulting slope. The catalytically
active surface area of different electrocatalysts can be directly compared by the Cdl values, because the
Cdl is in proportion to the active surface area [28].

4. Conclusions

In summary, a novel Ni(P, O)x·MoOx nanowire array supported on a Ni foam was prepared
via a facile approach. Because of the synergistic effect of the Ni-species and amorphous MoOx, the
as-prepared catalyst exhibits excellent electrocatalytic performance in an alkaline media, including
a low overpotential of 59 mV at 10 mA cm−2, a small Tafel slope of 54 mV dec−1, and long-term
stability. The enhanced electrocatalytic performance demonstrates the advantageous combination of
compositional and geometric factors. The present work also provides an avenue to fabricating low-cost
alkaline electrocatalysts for practical implementation.
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