Supporting Information

Constructing Asymmetric Polyion Complex Vesicles via Template Assembling Strategy: Formulation Control and Tunable Permeability

Junbo Li ${ }^{1, *}$, Lijuan Liang ${ }^{1}$, Ju Liang ${ }^{1}$, Wenlan Wu ${ }^{2}$, Huiyun Zhou ${ }^{1}$, and Jinwu Guo ${ }^{1}$

${ }^{1}$ School of Chemical Engineering \& Pharmaceutics, Henan University of Science \& Technology, 263\# Kaiyuan Road, Luo Yang 471023, China; Lianglijuan@haust.edu.cn (L.L.); Liangju@haust.edu.cn (J.L.); hyzhou@haust.edu.cn (H.Z.); giinwu@126.com (J.G.)

2 School of Medicine, Henan University of Science \& Technology, 263\# Kaiyuan Road, Luo Yang 471023, China; whenas@sian.com

* Correspondence: Lijunbo@haust.edu.cn; Tel.: +86-379-6423-2193

Figure S1. Zeta potentials of PMAA- b-PNIPAm-@-Au NPs complex with PEG-b-PMMPImB at various charge ratios (PMMA to PMMPImB). Values represent mean (\pm SD ($\mathrm{n}=3$))

Figure S2. The TEM image of Au 20 NPs(A) and PMAA- b-PNIPAm-@-Auz ${ }_{2}$ NPs(B)

Figure S3. Height profile of PICsomes corresponding to Figure 3C.

Figure S4. The ζ-potential distribution curves for PICsomes.

Figure S5. UV-Vis spectra of Au NPs, PMAA-b-PNIPAm-@-Au and PIC-@-Au NPs with different size of the Au template, where A is $10 \mathrm{~nm}, B$ is 43 nm and C is 58 nm .

Figure S6. Hydrodynamic diameter distributions of Au NPs, PMAA-b-PNIPAm-@-Au and PIC-@-Au NPs with different size of the Au template, where A is 10 nm , B is 43 nm and C is 58 nm .

Figure S7. Hydrodynamic diameter distributions of PICsome10, PICsome43 and PICsome5s, where the subscript corresponds to the size of the Au template.

