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Abstract: This study presents the impact of carbon nanotubes (CNTs) on mitochondrial oxygen mass
flux (Jm) under three experimental conditions. New experimental results and a new methodology are
reported for the first time and they are based on CNT Raman spectra star graph transform (spectral
moments) and perturbation theory. The experimental measures of Jm showed that no tested CNT
family can inhibit the oxygen consumption profiles of mitochondria. The best model for the prediction
of Jm for other CNTs was provided by random forest using eight features, obtaining test R-squared
(R2) of 0.863 and test root-mean-square error (RMSE) of 0.0461. The results demonstrate the capability
of encoding CNT information into spectral moments of the Raman star graphs (SG) transform with a
potential applicability as predictive tools in nanotechnology and material risk assessments.

Keywords: carbon nanotubes; cytotoxicity; mitochondria oxygen mass flux; Raman spectroscopy;
graph theory; spectral moments

1. Introduction

Carbon nanotubes (CNTs) have attracted great interest for their promising applications in the
fields of biomaterials and nano-biotechnology. Therefore, the evaluation of their toxicity in biological
systems is a goal of major importance for the biomaterial sciences. Currently, evidence has been
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accumulating regarding the CNT toxicity associated with mitochondrial dysfunction and apoptosis [1].
Some in vitro studies have demonstrated that CNTs exhibit cytotoxicity after their accumulation in the
mitochondria matrix and/or by affecting the function of mitochondrial respiratory complexes of the
inner membrane [2,3].

However, it is still not known which bio-energetic mechanisms (the inhibition of adenosine
diphosphate/adenosine triphosphate (ADP/ATP)-transport, uncoupling effects on oxidative
phosphorylation, the induction of mitochondrial permeability transition pores, etc.) are responsible
for the initiation of CNT mitochondrial damage [4–9]. Particularly, the study of mitochondrial
dysfunction based on perturbations of the mitochondrial oxygen mass flux induced by CNTs could
be decisive for the in vitro prediction of the no-observed-adverse-effect level (NOAEL) [10] and
the evaluation of the selective nanotoxicity (mitochondrial channel nanotoxicity) towards potential
biomedical applications in precision medicine. Several scientific reports highlight a major impact
of adverse/toxic effects induced by CNT on critical mitochondrial components due to a peculiar
mitotropic behavior. Mitochondrial oxygen mass flux regulates the mitochondrial volume linked to
the Ca2+ induction of mitochondrial permeability transition pores (MPTP) and also to the increase of
the mitochondrial reactive oxygen species (ROS-levels) based on the partial reduction of molecular
oxygen in the mitochondrial respiratory complexes (complex IV). The latter have been extensively
characterized and associated with several chronic pathological processes, such as neurodegenerative
diseases (Alzheimer, Parkinson, Epilepsy), cardiac ischemia, and cancer. These diseases have currently
high levels of morbidity and mortality, and mitochondrial dysfunction based on oxygen mass flux
mechanisms has been indirectly or directly involved.

On the other hand, Raman spectroscopy provides information on the chemical fingerprints of
molecules, biomolecular systems and nanoscale structures: DNA [11], proteins [12], antibodies [13]
and CNTs [14]. In addition, the presence of the G band (1580 cm−1) in the Raman spectra of
SWCNTs has been corroborated in mitochondria associated with incipient colloid–osmotic swelling
or the induction of mitochondrial permeability transition pores [15]. Recent studies using Raman
spectroscopy and polarographic methods have shown that CNTs alter cytochrome c electron transfer
and modulate mitochondrial function at a critical concentration of 10 µg/mL [16]. Previous quantitative
structure–activity relationship (QSAR) models of CNTs in terms of mitochondrial respiratory function
have been reported [10]. However, there are only few studies about the relationship between a CNT’s
physicochemical parameters from an oxygen mass flux perspective.

In principle, the Raman spectra signals of different CNTs can be used as inputs for machine
learning (ML) methods to predict a dose–effect relationship for the biological properties of CNTs.
Nevertheless, the Raman spectra of CNTs have many peaks (>1000 points), making statistical analysis
still possible, but somewhat difficult. A possibility for this kind of signal is to compress them into
another series of numerical parameters that quantify useful structural information on all the spectra.
In a previous work, the star graphs (SG) of the Raman spectra of CNTs [17] were introduced. The
idea is to transform the signal into a network with star graph (SG) topology. Next, different invariants
can be calculated from the adjacency matrix associated with this SG graph representation of the
spectra. Afterwards, the new invariants are supposed to contain useful information, compressed
and used as input in ML experiments. Last, as a result of the ML study, predictive models are
obtained, which are able to connect the Raman spectra with the biological activity under study. In
fact, our group have used this scheme based on SRN transforms to model biological properties
from protein sequences [18–20], nucleic acid sequences [21], blood protein mass spectra [22] and
electroencephalogram (EEG) signals [23]. These studies have used different matrix invariants such
as Markov–Shannon entropies or matrix trace invariants Trk (also known as spectral moments) to
compress the information from proteins, gene, etc. In a previous work, the research focused on how to
use Markov–Shannon entropies to compress information from Raman spectra [17]. However, there is
no report on the use of Trk values in this sense.
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This work is aimed at combining experimental and computational techniques to provide a
heuristic solution to the above-discussed problem. Firstly, high-resolution respirometry (HRR)
polarographic (Oxygraph-2k) assays are used for the first time to address this issue. This methodology
provides a quick and reproducible means to measure the rate of oxygen consumption by mitochondria
isolated from different tissues using a sensitive Clark-type electrode. Simultaneously, the oxygen
mass flux (O2 flux) in mitochondrial suspensions can be monitored depending on the time of
exposure [24–26]. Currently, there are no precedents for this methodology applied to the evaluation of
the no-observed-adverse-effect level of CNTs. In addition, a new computational model is developed
for the prediction of dose–effect relationships for this property for other CNTs. In doing so, the Trk
values of the Raman spectra of CNTs are used as an input to seek a predictive model based on machine
learning (ML) and perturbation theory (PT) (PTML model). PTML models are useful to predict
the properties of complex molecular systems with simultaneous variations of multiple experimental
boundary conditions, such as chemical reactivity, drug metabolism, vaccine peptide epitopes, metabolic
networks, and micelle nanoparticles [27–30]. Figure 1 depicts a workflow scheme with the general
steps of this work. The current work paves the way for the use of PTML models, polarography, and
Raman spectroscopy, and for the experimental and theoretical study of other biological properties of
CNTs in the future.
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2. Results

2.1. Experimental Results

High-resolution respirometry (HRR) using Oroboros Instruments (Oxygraph-2k) was applied
to evaluate the effects of the CNT family on the bioenergetic mitochondrial function through the
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measurement of oxygen mass flux after exposure with different CNTs (from CNT-1 to CNT-9). A default
experimental concentration of 5 µg/mL for all CNTs was established to assess the different contribution
of the remaining physical–chemical parameters in the NOAEL for the oxygen mass flux response.
Figure 2 shows a representative profile of the mitochondrial oxygen mass flux of isolated rat liver
mitochondria, showing the small pulses of ADP-titration associated with transient increments of
O2 flux during the period of ATP synthesis or V3 state (ADP-dependent respiration) = ratio of
mitochondrial ADP-flux (Jm(ADP))/(Jm(O2)) + mitochondrial inorganic pyrophosphate Pi-flux (Jm(Pi))
for the experimental condition of untreated-rat liver mitochondria (untreated-RLM) and pre-incubation
with the different CNTs (RLM + CNTs 5 µg/mL). The respiratory substrates (ADP) and the uncoupling
agent carbonyl-cyanide p-trifluoromethoxyphenylhydrazone (FCCCP) were added where indicated
by the arrow. In addition, in the supplementary information file, a figure that depicts a control profile
of the mitochondrial oxygen mass flux of isolated RLM was included.
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Figure 2. Representative profiles of the mitochondrial oxygen mass flux of isolated rat liver
mitochondria (Y2: Red curve).

Figure 3 shows a schematic representation of mitochondrial ADP/ATP exchange and oxidative
phosphorylation based on a proposed mechanism linked to the profiles of the mitochondrial oxygen
mass flux of isolated rat liver mitochondria. It shows the different states of the mitochondrial
respiration V2 state (basal respiration), V3 state (ADP-dependent respiration), V4 (or VFCCCP state of
ADP-independent mitochondrial respiration) in untreated rat liver mitochondria or untreated RLM
(black curve), CNT-treated RLM at concentration 5 µg/mL (red curves) and treated RLM with CATR
(or ADP-inhibitor) (green curve). The respiratory substrates (ADP) and the uncoupling agent (FCCCP)
were added where indicated by the arrow. These results are representative for the three experiments
using Oroboros Instruments (Oxygraph-2k). * p < 0.001 to statistical differences between CATR (or
ADP-inhibitor) (green curve) and CNT-treated RLM at concentration 5 µg/mL (red curves).
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Figure 3. Representation of mitochondrial ADP/ATP exchange and oxidative phosphorylation. ***p is
used to represent the significant statistical differences between V3 state-ADP-dependent mitochondrial
O2 flux from the RLM + CNT treated groups (CNT1-9) and V3 state-ADP-dependent mitochondrial O2
flux from the RLM + Carboxyatractyloside (CATR, a specific inhibitor of ADP-mitochondrial transport).

2.2. Computational Results

The variation of the mitochondrial oxygen mass flux in the presence of CNTs was modeled using the
PTML methodology based on the SG trace invariants of the Raman spectra (Tr0–5) of CNT. The RRegrs tool
was adapted for calculations on an High Performance Computing (HPC) cluster and was used to test three
types of regression methods: Linear Multi-regression (LM), Neural Network (NN) and Random Forest
(RF). The objective of the modeling was to find the best prediction model for the mitochondrial oxygen
flow in the presence of CNTs. The linear and non-linear methods were used with 10 different random
data splits (75% for training–25% for test) using a custom script presented in the Figshare repository
(https://doi.org/10.6084/m9.figshare.3472349). This script normalizes and splits datasets in a similar way
to the RRegrs tool with the parameters CVtypes = repeatedcv (10-cross-validations) and default number
of data splits (iSplitTimes = 10). After the normalization and removal of the correlated features (default
RRegrs methodology cutoff = 0.9), eight input features remain in the final dataset. Thus, the Figshare
repository presents several files: “ds2.full.Tr.csv”, the initial dataset without any filters (all features), and
“ds2.corr.Tr.csv”, the final dataset after removing correlated features and using normalization. The last
dataset was used with the script “CreateNormalisedSplits.R” to create 10 random splits of data as training
and test subsets to test them with regression methods.

The first two are the expected values of flux, Jm(O2)expected and the duration of the experiment
(t). The other six input variables are moving average (MA) operators, including at least one MA
for each experimental condition. These MA operators are: ∆Tr0(rep), ∆Tre3(rep), ∆Tre0(CNTtype),
∆Tre4(Func.Type), ∆Tre0(Solvent), and ∆Tre5(Solvent). Please note that the MA operators ∆Trk(cj) =
Trk − <Trk(cj)> and ∆Trek(cj) = Trek − <Trek(cj)> quantify the deviation of the Trk or Trek of the Raman
spectra of a specific CNT from the expected values <Trk(cj)> or <Trek(cj)>, measured for all Raman
spectra and recorded for all CNTs with the specific experimental condition (cj). The symbol Trk refers
to traces calculated from linear graphs of the Raman spectra and the symbol Tre for graphs with
recurrence information embedded. Table 1 shows the minimum, maximum, and mean values for
R-squared/root mean squared error of training and test subsets (R2

tr/RMSEtr and R2
ts/RMSEts) for

https://doi.org/10.6084/m9.figshare.3472349
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the eight-feature dataset (10 splits). The first observation in terms of results is that the models were
not over-fitted because the differences between the training and test statistics were small. Additional
statistics are available online at Figshare [31] (ds2.Tr.models.xlsx).

Table 1. Predictive model based on Machine Learning and Perturbation Theory (PTML) statistics for the
evaluation of mitochondrial oxygen flow modifications due to CNTs (10 random splits for each method).

Regression Method Statistics
Training Test

R2
tr RMSEtr R2

ts RMSEts

Linear Multi-regression (LM)
Mean 0.358 0.0959 0.356 0.0954
Min 0.349 0.0954 0.340 0.0932
Max 0.363 0.0966 0.384 0.0969

Neural Network (NN)
Mean 0.645 0.0709 0.672 0.0681
Min 0.626 0.0697 0.620 0.0613
Max 0.659 0.0727 0.739 0.0738

Random Forest (RF)
Mean 0.855 0.0455 0.856 0.0452
Min 0.851 0.0451 0.853 0.0431
Max 0.858 0.0462 0.863 0.0461

The file ds2.Tr.models.xlsx from Figshare presents the statistics for each regression model and
individual data split. In addition, minimum, maximum, and average values of the statistics are
presented. The final results include the best model from an individual split and its model is saved as
an R object. Thus, it is possible to directly use the best model by loading it with an R script and making
any prediction. Average values of R2

ts and RMSEts for LM, NN and RF are presented in the same file.

3. Discussion

3.1. Discussion of Experimental Results

The results showed that all the tested CNT family did not inhibit (or affect) the profiles of oxygen
mass flux in isolated rat liver mitochondria after the sequential addition of ADP intermittent pulses,
which characterize the state V3 of respiration (ADP-dependent) for the untreated RLM and treated RLM
with CNTs (5 µg/mL) (see Figure 2, red profile of oxygen flux). Note that for this instance, no significant
differences were detected in the profiles of mitochondrial oxygen mass flux, compared with the strong
inhibition of the state V3 of respiration detected for mitochondrial treated with carboxyatractyloside
a specific inhibitor of ADP-mitochondrial transport (CATR-treated RLM), as shown in Figure 3
(red profile of oxygen flux). Moreover, the oxidative phosphorylation was not affected by ATP
synthase, which depends on the ADP transport by ADP/ATP mitochondrial carrier between the
cytosol and mitochondrial matrix under physiological normoxic conditions. The in vitro results
suggest a non-inhibitory biochemical response of oxygen mass flux in isolated rat liver mitochondria.
Furthermore, treated RLM with CNTs maintained the normally-induced uncoupling response of state
V4 (or Vfcccp) after the addition of FCCCP 2 µM (classical uncoupling agent of the mitochondrial
oxidative phosphorylation) according to an increase in the oxygen mass flux state V4 of respiration
between 750 and 1250 seconds for all CNTs tested, as shown in Figure 3.

According to these results, several aspects should be considered in order to explain the relevance
of CNT NOAEL in terms of mitochondrial oxygen mass flux response. Covalently functionalized CNTs
(oxidized-CNTs) and/or with point defects characterized by the D band of Raman spectra (with a
characteristic peak at 1350 cm−1) are expected to have greater biocompatibility than pristine CNTs [15].
This may be due to the ability of the OH and COOH groups of oxidized CNT or π–bond of the sp2

of pristine CNT wall to form several adducts with the basal oxygen-free radical [32], released by the
mitochondrial complex I and III at between the V2 and V3 state of mitochondrial respiration. In this
context, the non-significant respiratory effects from a low CNT concentration (5 µg/mL) could be
recognized as a typical pharmacodynamic criterion of NOAEL for CNTs, similar to the sub-clinical
effects of traditional lipophilic agents with mitochondrial mechanisms reported in the literature.
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As mentioned in the introduction of this work, CNTs can modulate mitochondrial function at a critical
concentration of 10 µg/mL [25].

In this sense, it should be pointed out that the biocompatibility/toxicity relationship of the tested
CNT family may be important in predicting the no-observed-adverse-effect level. This is not only
limited to considerations of dosimetry in terms of concentration, but also applies to the influence of the
physicochemical nanodescriptors of the tested CNTs (Raman nanodescriptors). Thus, the prediction
of uncertainty factors or encrypted information in the CNT structure, such as new Raman spectra
nanodescriptors, could be used to model the dosimetric criteria anticipated to be without an increased
risk for CNT adverse effects [33,34].

3.2. Discussion of Computational Results

Discussion of the PTML computational study. LM produced poor results (mean R2
ts = 0.356; mean

RMSEts = 0.0954), showing that the relationship between the input moving averages (MAs) of the
CNT Raman SG spectral moment and the mitochondrial oxygen flow is not a linear one, or that these
features did not include enough information to model this relationship. Starting with the non-linear
methods, such as NN and RF, the performance of the regression model improved. Thus, NN provided
a mean R2

ts of 0.672 and a mean RMSEts of 0.0681. The best NN model (split 3) was a single-hidden
layer with 10 neurons, a structure of 8-10-1 (eight inputs, 10 neurons in one hidden layer, one output),
a weight decay of 0.001, and an R2

ts of 0.739 and an RMSEts of 0.0613 [31].
The RF predictor significantly improved the regression performance for mitochondrial oxygen

flow: a mean R2
ts of 0.856 and a mean RMSEts of 0.0452 were obtained. Compared with the NN

statistics, R2
ts increased by 0.184 and RMSEts decreased by 36.6%. The best RF model (split 2) has

50 trees, an R2
ts of 0.863 and an RMSEts of 0.0461. The variation in the RF error with the number of

trees is shown in Figure 4. The model could be downloaded from the free online repository [31] and it
could be used for future predictions or may be included in future R applications. The use of all initial
34 features had no important improvements in the regression performance with mean values for LM,
NN and RF of 0.356, 0.601 and 0.857 (see all details online [31]). This means that the other features
obtained no useful information to improve the current model. In order to check the model quality, the
regression receiver operator characteristic (RROC) curve [35] for the test subset is shown in Figure 5.
The RROC demonstrates the performance of the RF model.Nanomaterials 2017, 7, 386 8 of 14 
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4. Materials and Methods

4.1. General Workflow

The aims of this paper are:

(a) The measurement of the CNT effect on the mitochondrial oxygen mass flux with polarography;
(b) The definition and calculation of the matrix trace invariants (Trk) of SG transforms of Raman

spectra for a series of CNTs for the first time;
(c) The use of the Trk values as input to seek new PTML models able to predict CNTs’ effect on

mitochondrial oxygen mass flux.

Thus, the following steps were taken (see Figure 6):

(1) Experimental measurements of the mitochondria oxygen mass flux in the presence of different
CNT types;

(2) Transformation of CNT’s Raman spectra into SG spectral moments;
(3) Calculation of the expected values of the mitochondria oxygen mass flux and the moving averages

of the SG spectral moments under different experimental conditions;
(4) Search for the best regression PTML models using the RRegrs package in R (https://github.com/

enanomapper/RRegrs/).

https://github.com/enanomapper/RRegrs/
https://github.com/enanomapper/RRegrs/
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4.2. Experimental Methods

4.2.1. General Procedures

In the Supplementary Information (SI) file, a detailed description of the following sections is
included: sample preparation, reagents and solutions, Raman spectra recording, animal welfare, and
isolation of rat liver mitochondria (RLM). The RLM were isolated by standard differential centrifugation
according to the experimental procedures established in the literature [36].

4.2.2. Monitoring Mitochondrial Oxygen Mass

The HRR method was used, along with Oroboros Instruments, DatLab Version 4.2.1.50
(Oxygraph-2k). This methodology included the use of a 2 mL glass chamber equipped with a magnetic
stirrer. Mitochondrial O2 mass flux (pmol/seg) in the absence and presence of different carbon
nanotubes (CNT-1 to CNT-9) was monitored and measured as the negative time derivative of an
oxygen concentration (nmol/mL). The mitochondrial oxygen mass flux values were corrected for the
small amount of back diffusion of oxygen from materials within the chamber, any leak of oxygen from
outside the vessel, and oxygen consumed by the polarographic electrode [26,37,38].

With this in mind, the RLM isolated (1 mg protein/mL) were energized with 5 mM
potassium succinate (plus 2.5 µM rotenone) in a standard incubation medium, consisting of
125 mM sucrose, 65 mMKCl, 2 mM inorganic phosphate (K2HPO4) and 10 mM potassium
hydroxide-2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid (HEPES-KOH) pH 7.4 at 20 ◦C in a
standard respiration medium. The experimental approach was calibrated using the oxygen content of
an air saturated medium [38]. All the aforementioned steps were performed by the pre-incubation of
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isolated rat liver mitochondria with 5 µg/mL for all the CNT-treated groups. This level of concentration
was considered based on the NOAEL criteria mentioned in the introduction of this work. For this
instance, 5 µg/mL of the CNT concentration is the corrected half value of the CNT concentration
(10 µg/mL) used by Ma et al., who promoted an incipient colloid–osmotic swelling or low induction
of mitochondrial permeability transition pores, noticeably detected by Raman spectroscopy [15,16].
The total number of the collected data points was 32,940. The data obtained from the mitochondrial
oxygen mass study in the presence of CNTs and the CNT spectra were used to search for a theoretical
model which predicts mitochondrial oxygen mass in the presence of new CNTs.

4.3. Computational Methods

4.3.1. Trace Invariants of Raman Spectra

One of the objectives of this work is to develop a mathematical model able to predict the biological
effect of CNTs using as an input the information extracted from Raman spectra. Thus, a new type of
parameters is proposed, calculated by the application of a Star Graph (SG) transform to the Raman
spectra. The SRN transform method, which has been recently introduced and published by our
group [17], uses graphs and network theory tools, and is different from a classic Fourier transformation.
The transform technique used herein converts the Raman spectra values into sequences of characters
and creates the corresponding SG of this signal. The SG of any sequence/signal may be constructed
using the S2SNet tool [39]. To construct the SG transform of a Raman spectrum, the latter should be
split into intervals of 100 units, from 0 to 1800. As a result, the maximum number of SG branches is
18 and corresponds to characters from “a” to “r”. Subsequently, the adjacency matrix A should be
constructed for this sequence of characters (spectral sequence). The matrix A was enriched by adding
the information about the recurrence to the same type of term in the spectral sequence. After this
step, the matrix Ae was obtained, with recurrence information embedded (e). As a result, different
invariants from the matrices A and Ae can be calculated. In this work, the matrix trace values (Trk
and Trek; k = 0–5) were calculated, also known as the spectral moments [39] of the matrices A and
Ae obtained after the SG transformation of the Raman spectra. Our hypothesis is that these spectral
moments encode useful structural information that can be responsible for biological activity and
further predictive studies (see Figure 1).

4.3.2. PTML Model

The current section describes the application of the algorithm of PTML heuristic models [30] in
order to study the effect of different CNTs on the mitochondrial oxygen mass flux under different
experimental conditions. The general equation of a linear PTML heuristic model could be described by
Equation (1).

Jm(O2)pred = a0 + a1·Jm(O2)expected + a2· f (t) +
5

∑
k=0

bk·∆Trk
(
cj
)
+

5

∑
k=0

ck·∆Trek
(
cj
)

(1)

where Jm(O2)pred is the predicted mitochondrial oxygen mass flux. The term Jm(O2)expected = <Jm(O2)> is
the average value of Jm(O2) for different subsets of experimental conditions (expected value of Jm(O2)).
The other input values ∆Trk and ∆Trek are the moving average (MA) operators. The MA operators
∆Trk(cj) = Trk − <Trk(cj)> and ∆Trek(cj) = Trek − <Trek(cj)> quantify the deviation of Trk or Trek of the
Raman spectra for a specific CNT from the expected average values <Trk(cj)> or <Trek(cj)> measured
for all Raman spectra, recorded for all CNTs with the specific experimental condition (cj). The symbols
Trk refer to traces calculated from linear graphs of the Raman spectra and the symbol Trek for graphs
with recurrence information embedded. The coefficients ak, bk, and ck are the linear coefficients of
the equation.
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4.3.3. Model Dataset

The experimental data for the mitochondrial oxygen mass flux (Jm) in the presence of CNTs
are available as a FigShare repository [31]: 32,940 cases of Jm(O2), CNT1-9, CNTtype, Replicate
(rep), Function_type (chemical modification of CNT), Solvent and time (t). Jm(O2) was measured
under four types of experimental conditions (c) such as Replicate (rep), CNTtype, Functiontype
(chemical modification of CNT), and Solvent. Replicate (rep) has two values: 0 or 1, for non-replicated
and replicated experiment. CNTtypes are multi-walled carbon nanotubes (MWCNT), mixed
single walled/double-walled carbon nanotubes (SW+DWCNT), and single-walled carbon nanotube
(SWCNT). CNT type is “0” when the assay is a control assay with a blank solution with a CNT
concentration equal to 0. The values of the solvent condition are H2O and dimethyl sulfoxide (DMSO).
The CNT Function types could have three values: 0 (none), COOH and OH. The average of the SG
spectral moments under the experimental conditions are presented on the FigShare platform [31].
The final dataset, used to find the best prediction model is made up of 32,940 cases and 34 input features.

4.3.4. PTML Regression Predictors

The raw dataset was normalized and the training and test sub-sets were obtained using 10 splits:
75% training sets (train) and 25% test sets (test) using an R script available online [40]. The regression
PTML models were searched with RRegrs, an R integrated framework that provides ten linear and
non-linear regression models [41,42]. The selection of the models used the criteria of the Rts values
(regression coefficient for test subset) and the RMSEts (root-mean-square error) corresponding values.

Three types of regression methods of RRegrs were used: multiple linear regression (LM), neural
networks regression (NN) [43], and random forest (RF) [44]. Thus, the correlated features were removed
using the parameters of RRegrs. For NN and RF, a study of the method parameters was performed.
A modified version of RRegrs (batchRRegrs: https://github.com/cafernandezlo/batchRRegrs)
was used on the BioCAI HPC platform from the University of A Coruna (A Coruña, Spain).
The batchRRegrs default values of parameters were generally employed (https://github.com/
cafernandezlo/batchRRegrs/blob/master/batchRRegrs/batchRRegrs.R). The default optimizations
used the tuneGrid parameter of the caret training method:

- NNreg function used a grid for 200, 300 and 400 neurons in the hidden layer (.size) and a decay of
0, 0.01, 0.2, 0.1 (.decay) (method = ‘nnet’);

- RFreg function used 1500 trees (ntree = 1500 for method = ‘rf’).

An additional number of neurons were tested for NN (1, 5, 10 and 15) and different decay values
(0.001 and 0.005). Moreover, an additional number of trees in RF were tested: 5, 10, 20, 30, 40, 50, 100,
and 500. The best RF model should use the lowest number of trees and best statistics. The results
presented for NN and RF models the parameters for the best models.

The criteria to find the best model apply the RRegrs methodology: maximum R2
ts and minimum

RMSEts. The plots were obtained with custom R scripts. The best regression model which predicts
mitochondria oxygen mass flux in the presence of CNTs is available online [31] in order to be used
for future predictions. The regression receiver operator characteristic (RROC) curve was constructed
using the algorithm from reference [35]. The RROC presented the over-estimation (OVER) against the
under-estimation (UNDER). Thus, the curve was drawn by adjusting a shift (a constant that was added
or subtracted) for the predictions. This shift is similar to the threshold in the case of classifications.

5. Conclusions

The current study presented a mixture of experimental and predictive methodologies to study the
effect of different CNTs on the mitochondrial oxygen mass flux. The experimental results showing
non-significant respiratory effects from low CNT concentrations (5 µg/mL) could be recognized as a
typical pharmacodynamics criterion of NOAEL for CNTs. In this context, the information encrypted in

https://github.com/cafernandezlo/batchRRegrs
https://github.com/cafernandezlo/batchRRegrs/blob/master/batchRRegrs/batchRRegrs.R
https://github.com/cafernandezlo/batchRRegrs/blob/master/batchRRegrs/batchRRegrs.R
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the Raman spectra of CNT structures can be used as novel nanodescriptors to model the complexity of
the dosimetric criteria, as no adverse mitochondrial respiratory effect level (or normal O2 flux) was
found. The R object model and an R script are available online at https://dx.doi.org/10.6084/m9.
figshare.3545561.

These results show that the SG transform of CNT Raman spectra contains important information,
as new CNT nanodescriptors can be combined to provide a prediction model under the experimental
conditions over time for the mitochondria oxygen mass flux under the presence of specific CNTs.
These in silico results indicate that this methodology can be employed for massive, virtual-based, raw
data for Raman spectroscopy in order to make regulatory decisions in the biomaterial sciences.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/7/11/386/s1,
Table S1. Properties of CNT families, Figure S1. Raman spectra for carbon nanotubes used in the present study,
Figure S2. Control profile of mitochondrial oxygen mass flux of isolated rat liver mitochondria (Y2: Red curve).
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