
Flotation Assembly of Large-Area Ultrathin MWCNT Nanofilms for Construction of Bioelectrodes

Andrew J. Gross 1,2, Jules L. Hammond 1, Michael Holzinger 1 and Serge Cosnier 1,*

- ¹ Department of Molecular Chemistry, UMR CNRS-UGA 5250, Université Grenoble Alpes, 38000 Grenoble, France; andrew.gross@univ-grenoble-alpes.fr (A.J.G.); jules.hammond@univ-grenoble-alpes.fr (J.L.H.); michael.holzinger@univ-grenoble-alpes.fr (M.H.)
- ² Université Grenoble Alpes, CERMAV, 38000 Grenoble, France
- * Correspondence: serge.cosnier@univ-grenoble-alpes.fr; Tel.: +33-4-56-52-08-10

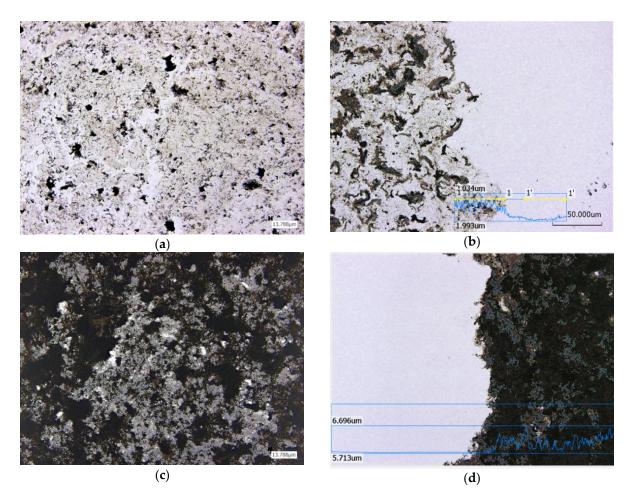


Figure S1. Atomic force microscopy topographic images (10.0 μ m × 10.0 μ m) for depth profiling recorded at (**a**) thin and (**b**); blue markers indicate the 1.0 μ m × 9.5 μ m cross-sections corresponding to the average line plots in **Figure 2c** and **Figure 2d**.

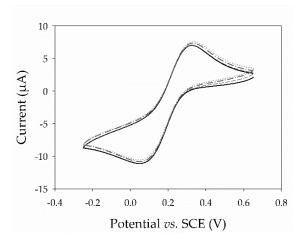


Figure S2. Scanning electron microscopy images showing (**a**) thin MWCNTs transferred to a Au substrate; (**b**) thin MWCNTs transferred to a Si substrate.

Supplementary Information

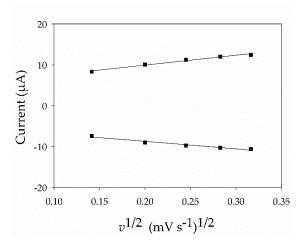


Figure S3. Confocal laser images of (**a**,**b**) thin MWCNTs transferred to a Si substrate: (**a**) typical central area and (**b**) edge boundary with height measurement; (**c**,**d**) thick MWCNTs transferred to a Si substrate: (**c**) typical central area and (**d**) edge boundary with height measurement.

Figure S4. Cyclic voltammograms recorded at thin MWCNT on Pt in 1 mM $K_3Fe(CN)_{6^3}$ in 0.1 M PB pH 7 with 0.1 M KCl as supporting electrolyte showing 1st, 2nd, 10th and 20th (solid, dash, dash-dot and dot, respectively) cycles.

Supplementary Information

Figure S5. Linear dependence ($R^2 = 0.980$) of peak current versus scan rate for the anodic and cathodic peaks at thin MWCNT on Pt in 1 mM K₃Fe(CN)_{6³⁻} in 0.1 M PB pH 7 with 0.1 M KCl.