Electronic Supplementary Information # An Al₂O₃ Gating Substrate for the Greater Performance of Field Effect Transistors Based on Two-Dimensional ### **Materials** Hang Yang¹, Shiqiao Qin², Xiaoming Zheng^{1,3}, Guang Wang¹, Yuan Tan¹, Gang Peng^{1*}, and Xueao Zhang^{1*} ¹College of Science, National University of Defense Technology, China ²College of Optoelectronic Science and Engineering, National University of Defense Technology, China ³College of Physics and Electronics, Central South University, China ^{*.}Corresponding author. *E-mail address:* penggang@nudt.edu.cn ^{*.}Corresponding author. *E-mail address:* xazhang@nudt.edu.cn #### **Experimental details** Figure S1. Steps of deterministic transfer method. Graphene (or WS₂) nanoflakes were firstly exfoliated from the graphite crystals onto SiO₂/Si substrates using the mechanical exfoliation technique^[1]. Then polymer layers (polydimethylsiloxane (PDMS) and polyvinyl alcohol (PVA)) are used to transfer graphene nanoflakes from Si/SiO₂ substrate to PVA by strong adhere force between samples and polymer layer (heat temperature: 80°C). The polymer layers are then mounted in a micromanipulator to transfer the graphene flakes to Al₂O₃/Si substrate. After transfer, the sacrificial polymer layer (PVA) is dissolved with deionized water^[2]. #### **Results and Discussion** | substrate | Si | SiO ₂ | Al ₂ O ₃ | |-----------|-------|------------------|--------------------------------| | Sa | 0.18 | 0.30 | 1.26 | | Sq | 0.27 | 0.60 | 2.24 | | Ska | 301.4 | 45.3 | 11.3 | Table S1. Average roughness (Sa), root mean square (Sq) and coefficient of kurtosis (Ska) of three different substrates (Si, SiO₂, Al₂O₃). Obviously, the silica surface after washing by HF seems extremely smooth, just like original silicon. While some spotted islands distribute on Al₂O₃ surface, overall it is relatively flat (Sa=1.26nm). **Figure S2. Reflection spectra of graphene on different substrates.** Here, the brightness of the light source was kept to the same all the time. Due to the limitation of grating range, tests are performed at two center wavelengths: 520 nm and 600 nm. Finally, contrast of graphene on different substrates was extracted by^[3]: Contrast=(R_{sample-}R_{substrate})/R_{sample.} The contrast spectrum is smoothed by Savitzky-Golay method (parameters: left: **Figure S3. Raman scanning image of graphene on different substrates.** In practical situation, Raman spectrum of each point on graphene is not exactly the same. It would fluctuate due to the adsorbent of water vaper or oxygen molecules on graphene surface. Accordingly, a method named average selective area was adopted. Raman imaging of graphene (center: 2700 cm⁻¹, width: 300 cm⁻¹) was conducted at first. And then a homogeneous region was selected (blue box shown in figure) to analysis. Finally, average Raman spectrums of graphene on different substrates were obtained. **Figure S4. (a) Transfer characteristic and (b) Raman spectrum of few-layer graphene on an Al₂O₃/Si substrate.** Obviously, Al₂O₃ dielectric layer owns capability to regulate Fermi level of few-layer graphene. As shown in figure, when the gate voltage changes from -5 V to 1 V, the on/off ratio can reach about 9. Therefore the unit on/off ratio is 1.5 V⁻¹, which is higher than that of monolayer graphene (0.78 V⁻¹). Generally speaking, few-layer graphene has a band gap between the conduction band and the valence band^[4], thereby the unit on/off ratio is relatively higher than monolayer graphene, but the carrier mobility will be accordingly lower. Figure S5. (a) Photoluminescence and (b) Raman spectra of few-layer WS₂ on Al₂O₃/Si substrate. WS₂ is an indirect-bandgap semiconductor in bulk state, but can turn into a direct-bandgap material when exfoliated into the monolayer state. As shown in (a), the PL intensity of few-layer WS₂ reach maximum at 1.97eV. Besides, exfoliated few-layer WS₂ flakes have shown Al₈ (in-plane optical mode) and E_{2g} (out-of-plane vibrations of the molybdenum atoms) located at 349.1 cm⁻¹ and 521.3 cm⁻¹, which is consistent with earlier studies^[5]. #### References - [1] Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films [J]. science, 2004, (306): 666-9. - [2] Dean C R, Young A F, Meric I, et al. Boron nitride substrates for high-quality graphene electronics [J]. Nature Nanotechnology, 2010, (5): 722. - [3] Ni Z, Wang H, Kasim J, et al. Graphene thickness determination using reflection and contrast spectroscopy [J]. Nano letters, 2007, (7): 2758-63. - [4] Hong X, Posadas A, Zou K, et al. High-mobility few-layer graphene field effect transistors fabricated on epitaxial ferroelectric gate oxides [J]. Physical review letters, 2009, (102): 136808. - [5] Berkdemir A, Gutiérrez H R, Botelloméndez A R, et al. Identification of individual and few layers of WS₂ using Raman Spectroscopy [J]. Scientific Reports, 2013, (3): 1755.