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Abstract: In this work, we report the potential use of novel carbon nanofibers (CNFs), dispersed
during fabrication of glass fiber composites to monitor damage propagation under static loading.
The use of CNFs enables a transformation of the typically non-conductive glass fiber composites
into new fiber composites with appreciable electrical conductivity. The percolation limit of
CNFs/epoxy nanocomposites was first quantified. The electromechanical responses of glass fiber
composites fabricated using CNFs/epoxy nanocomposite were examined under static tension
loads. The experimental observations showed a nonlinear change of electrical conductivity of
glass fiber composites incorporating CNFs versus the stress level under static load. Microstructural
investigations proved the ability of CNFs to alter the polymer matrix and to produce a new polymer
nanocomposite with a connected nanofiber network with improved electrical properties and different
mechanical properties compared with the neat epoxy. It is concluded that incorporating CNFs during
fabrication of glass fiber composites can provide an innovative means of self-sensing that will allow
damage propagation to be monitored in glass fiber composites.
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1. Introduction

In recent years, textile fabric composites have attracted widespread attention owing to their
superior properties, making them attractive materials for many applications like smart fabrics and
the aerospace, marine, and automobile industries [1,2]. Glass fiber textile composites, in particular,
are being widely researched currently due to their relatively high strength-to-weight ratio at low cost.
The properties of glass fiber textile-reinforced polymer composites greatly depend on the fabric structure
as well as the matrix properties. Many attempts have been made to improve their properties for high
performance textile fabric composites. Several studies reported considerable improvement in fracture
toughness of glass fiber reinforced polymer (GFRP) when fumed silica, carbon black, carbon nanotubes
(CNTs) [3] and carbon nanofibers (CNFs) [4] were incorporated in polymer nanocomposites. The tensile
strength of GFRP was improved using carbon nanofibers [5] and CNTs [6]. Significant enhancements
in thermal and electrical conductivities of GFRP with carbon nanomaterials were reported [7–9].

In this sense, nanomaterials play an important and significant role in controlling the intrinsic
properties of glass fiber composites. Carbonaceous nanomaterials such as CNTs and CNFs are the most
common and the most promising additives used to fabricate multifunctional glass textile nanocomposites
with enhanced capabilities. For instance, CNFs are attractive candidates in conductivity-related
applications because of their relatively high electrical conductivity [10]. A percolated concentration
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must be incorporated to transfer the composite from an insulate state into conductive state, which
is known as the percolation threshold. At this concentration, the conductivity is improved by
several orders of magnitude and percolation network is achieved between conductive particles [11].
Yang et al. [12] found that the electrical conductivity of CNFs-filled polystyrene (PS) composite
improved by ten orders of magnitude over that of the neat PS with percolation threshold 4 wt %,
providing high electromagnetic interference shielding (EMI) at low filler loading. Yang at el. [13]
confirmed the percolation threshold of CNFs to be 5 wt % with a decrease in electrical resistivity
by 11 orders of magnitude. Lozano at el. [14] examined the electrical behavior of CNFs-filled
polypropylene (PP) for electrostatic dissipation (ESD) applications, and the percolation was found
to be 9–18 wt %. It was also found that the percolation threshold of CNFs/polypropylene (PP)
composites was about 3–5 vol % depending on the degree of graphitization (graphite perfection)
of CNFs [15,16]. Despite the fact that CNFs significantly improve the electrical conductivity of
polymers, there has been very limited research using CNFs for self-sensing applications. Park et al. [17]
found that CNFs/epoxy composites have reliable self-sensing capability under both static and cyclic
loading conditions. The aspect ratio of CNFs was reported to have significant effects in the formation
of electrically percolated networks. In addition, prior works [18,19] have confirmed that damage
monitoring using conductive CNFs composites is strongly dependent on forming a three-dimensional
conductive network inside the polymer matrix.

To date, the ability of CNFs in monitoring damage propagation in glass textile-reinforced
polymer composites has not yet been reported. In this study, the ability of CNFs to improve
electrical conductivity and alter the mechanical properties of epoxy nanocomposites is investigated.
The conductive CNFs/epoxy nanocomposite is then used to monitor damage propagation in glass
textile-reinforced polymer composites under static loading.

2. Materials and Methods

2.1. Materials and Fabrication

CNFs were supplied by Nanostructured & Amorphous Materials Inc. They had diameter
of 80–200 nm and a length of 0.5-20 µm and thus an aspect ratio ranging between 6.3 and 100.
The epoxy used in fabrication was EPOTUF® 37-127 epoxy system supplied by U.S. Composites, Inc.
(West Palm Beach, FL, USA) The epoxy resin is low viscosity, 100% reactive diluted liquid based
on Bisphenol-A containing glycidyl ether. The hardener was Aliphatic Amine EPOTUF® 37-614.
The resin to hardener mixing ratio was 2:1. The bidirectional S-Glass fiber fabric was supplied by ACP
Composites, Inc. (Livermore, CA, USA).

The performance of the CNFs-polymer nanocomposite is affected by the homogeneity of
nanofibers dispersion into the polymer matrix. Several dispersion methods were recommended in the
literature to obtain homogeneously dispersed CNFs in the polymer matrix and to avoid agglomeration.
CNFs with different contents (0, 0.3, 0.5, 1.0, 1.5, 2.0 and 2.5 wt %) were first hand-stirred into the epoxy
resin, and then sonicated in a path sonicator for 1 h at 40 ◦C and frequency of 40 kHz. The resin-CNFs
mixture was further dispersed using a high shear mixer at speed 11,000 rpm at a temperature of 90 ◦C
for 1 h. The resin-CNFs mixture was then mechanically stirred at temperature of 90 ◦C for 2 h and
a speed of 800 rpm. The resin-CNFs mixture was degassed to remove the bubbles for 30 min at 50 ◦C
and then left to cool for 1 h at room temperature. After cooling, the epoxy hardener was hand-stirred
into the resin-CNFs mixture for 5 min and left overnight. CNFs/epoxy nanocomposite was then cured
for 2.5 days at 110 ◦C to ensure full curing.

To prepare glass fiber reinforced (GFRP) composites, after adding the epoxy hardener to the
resin-CNFs mixture, that mixture was then used to fabricate the GFRP using the hand layup technique.
Six layers of bidirectional plain weave glass fiber textile fabrics were laid in 0◦ direction, and then
vacuum pressure was applied for 24 h. The glass fiber composite plates were then cured for 2.5 days
at 110 ◦C to insure complete curing. 2 wt % CNFs were used to fabricate glass fiber composites.
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The CNFs content used for producing the glass fiber composites was based on the electrical percolation
observations of epoxy-CNFs nanocomposites discussed below. Figure 1 presents schematically the
glass fiber composite fabrication method. Fiber volume fraction of glass fiber composites incorporating
2.0 wt % CNFs was determined using ASTM D3171 [20] and was found to be 55.6%. To examine the
dispersion of CNFs in the epoxy matrix, fractured surfaces of the epoxy-CNFs nanocomposites were
covered with a layer of gold and were then investigated using the Field Emission Scanning Electron
Microscope (FESEM) using Quanta 250, FEI Company’s Quanta 250. Fourier transform infrared (FTIR)
spectra was also recorded using Nicolet IS-10 FTIR spectrophotometer-Thermo Fisher Scientific within
400–4000 cm−1 wave number.
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Figure 1. Schematic representation of glass fiber composite fabrication incorporating CNFs.

2.2. Electrical and Mechanical Measurements of the Composites

The electrical conductivity of CNFs/epoxy polymer nanocomposites was determined according
to ASTM D257 [21]. Measurements were performed using a Keithley 2636b source meter and strip
electrodes via a standard two-probe configuration as shown in Figure 2.
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Silver paint was used to ensure good contact between the specimens and the electrode.
The electrical conductivity (σ) was calculated using Equation (1).

σ =
L

AR
(1)

A is the cross sectional area, L is the length, and R is the measured electrical resistance.
To identify the significance of CNF on the elastic properties of CNFs/epoxy nanocomposites,

three specimens of 20 mm × 10 mm × 3 mm were tested. Dynamic mechanic analysis (DMA) was
performed on a Triton Instruments, operating in the tension mode at an oscillation frequency of 1 Hz.
Data were collected from room temperature to 150 ◦C at a scanning rate of 10 ◦C/min. For static
tension properties of CNFs/epoxy nanocomposites, three specimens of 20 mm × 10 mm × 2 mm were
tested using Triton Instruments, operating in the static tension mode with preload force 0.01 N, load
rate 0.2 N/min and to maximum force 2 N.

Three GFRP composite coupons of 19 mm × 150 mm were tested under off-axis (i.e., load
was applied at 45◦ with respect to the fiber direction) static monotonically increasing tension stress.
The reason for choosing off-axis loading was to simulate realistic loading conditions where stresses are
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generated in any direction to the glass fiber composite. It is also well established that behavior of the
fiber composites in the off-axis direction is governed by the polymer matrix rather than the fibers [6].
Therefore, off-axis tension would best show the significance of CNFs. The static tension tests were
performed using MTS® Bionex servo hydraulic machine. A displacement control protocol was used in
the static tension tests according to the ASTM standards methods D3039/D3039M [22] with a loading
rate of 1.0 mm/min. The electrical resistance of the glass fiber composite specimens was measured
during the tension test using a Keithley 2636B source meter. Conductive electrodes were applied at
the glass fiber composite coupon using silver paint at two points spaced by 50 mm to allow electric
resistance measurements. Schematic representation of the electrical resistance measurement during
the static monotonically increasing tension test is shown in Figure 3.

Damage in glass fiber composite coupons was estimated in terms of the change of the electrical
conductivity during loading. The electrical conductivity was measured and a metric of damage based
on electrical conductivity change denoted DE(t) was calculated using Equation (2).

DE (t) = 1 − σ (t)
σ (t0)

% (2)

where DE(t) is the electrical damage measured at time t, σ(t0) is the initial electrical conductivity of the
composite prior to load application at time t0, and σ(t) is the electrical conductivity of the composite at
time t. Moreover, a metric of damage based on change of modulus of elasticity, representing mechanical
damage and denoted DM(t) was calculated using Equation (3):

DM (t) = 1 − E (t)
E (t0)

% (3)

where E(t0) is the initial tangent modulus of elasticity of the glass fiber composite coupon at t0 and E(t)
is the tangent modulus of elasticity of the glass fiber composite coupon at time t. A minimum tangent
modulus of zero was assumed to account for the descending stress-strain.
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3. Results and Discussion

3.1. Mechanical Properties of CNFs/Epoxy Nanocomposites

The mechanical properties of CNFs/epoxy nanocomposites can be observed from a static tension
test, shown in Figure 4a,b. The stress-strain relationship observed for CNFs/epoxy nanocomposites at
room temperature and the change in elastic modulus (E) versus the CNFs concentrations are shown
in Figure 4a,b respectively. The results show strong influence of the presence of the CNFs on the
mechanical properties of CNFs/epoxy nanocomposites, a gradual increase of material stiffness by
increasing the amount of CNFs within the epoxy matrix up to 1.0 wt % of CNFs and then a sharp
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decrease in the material stiffness for composite filled 1.5 wt %, 2.0 wt % and 2.5 wt % CNFs. Moreover,
the elastic modulus increases from 200 MPa to 700 MPa with increasing the CNFs concentrations from
0 to 1.0 wt % and drops to 200 MPa at 1.5 wt % CNFs, to 90 MPa at 2.0 wt % CNFs and to 100 MPa at
2.5 wt %. The reduction of elastic modulus at 2.0 wt % and 2.5 wt % CNFs/epoxy composite could be
attributed to the effect of CNFs on the epoxy network. We suggest that high content of CNFs reduced
the crosslinking degree of the epoxy matrix. Further in-depth investigations were conducted below to
examine this hypothesis.
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To better understand the significance of fillers/fibers on the mechanical properties of polymer
composites, a number of models exist in the literature [23–25]. We further examine here the model by
Christensen [24] to predict the elastic modulus of CNFs/epoxy nanocomposites:

Ec =
Vf

6
E f +

[
1

1 − Vf

(
1 +

Vf

4
+

Vf
2

6

)
Em

]
(4)

where Ec, Em and Ef are the moduli of composite, matrix and filler respectively and Vf is the filler/fiber
volume fraction.

Figure 5 compares the experimentally measured Young’s modulus of CNFs/epoxy
nanocomposites with the values predicted using Christensen’s model [25]. The predicted values
given by Christensen’s model showed a good agreement with the experimental observation of Ec

except at CNFs contents above 1.0 wt % CNFs. At low CNFs contents, the significance of the CNFs
on the epoxy matrix is negligible, and thus CNFs work as fibers that reinforce the epoxy matrix
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and improve its mechanical properties as a composite. This behavior follows classical composite
theory and thus good agreement with the model can be observed. Conversely, at 2.0 wt % and
2.5 wt % CNFs (i.e., higher CNFs concentrations), CNFs start to induce a chemical effect on the epoxy
matrix, hindering the reaction between the resin and the hardener and affecting epoxy crosslinking.
This adversely affects the mechanical properties of CNFs/epoxy nanocomposite. The effect of CNFs
on epoxy crosslinking is not considered in Christensen’s model [25] and all other composite models in
the literature, which only account for the reinforcing effect of the fillers. This model therefore failed to
predict the modulus of elasticity of CNFs/epoxy nanocomposite incorporating high CNFs content as
shown in Figure 5. Interestingly, composite filled with 1.5 wt % CNFs (at the transition between low
and high CNFs contents) has no positive or negative effect on the elastic modulus. The 1.5 wt % CNFs
is not high enough to chemically affect epoxy crosslinking. In addition, this concentration failed to act
as reinforcing filler, having no effect on the elastic modulus of the epoxy nanocomposite.
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To further confirm the above hypothesis of interaction between the CNFs and epoxy and the
chemical significance of high CNFs on epoxy, FTIR analysis was performed. FTIR is utilized to observe
chemical changes of the epoxy matrix after incorporating CNFs. The FTIR spectra of the epoxy matrix
with and without CNFs is presented in Figure 6. Figure 6 shows the absorption bands corresponding
to C–H (2800–2970 cm−1), epoxide ring (~830 cm−1), N–H of primary amines (1590–1640 cm−1), O–H
groups (3200–3600 cm−1), C–N (1040–1120 cm−1) and ether (~1250 cm−1).
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Comparing the FTIR spectrum of 2.0 wt % CNFs/epoxy with other spectra of CNFs/epoxy
polymer nanocomposites and the neat epoxy, it can be observed that incorporating 2.0 wt % CNFs in
the epoxy matrix caused an increase in the epoxide ring and primary N–H band intensity. In addition,
the band of the hydroxyl group is significantly shifted to a lower intensity and to a lower wave number
value (3410–3320 cm−1) at this wt % of CNFs compared with other wt %. It is obvious from the FTIR
spectra in Figure 6 that for the neat and low concentration CNFs samples (0.3, 0.5 and 1.0 wt %) the
O–H peak appeared almost around 3410 cm−1. This is attributed to the fact that at such low CNFs
concentrations, there is a minor effect from CNFs on epoxy curing. Incorporating CNFs concentrations
of 1.5, 2.0 and 2.5 wt % into the epoxy matrix appeared to shift the O–H peak to 3370 cm−1, 3320 cm−1

and 3310 cm−1, respectively. This may be attributed to the effect of CNFs on the curing behavior of the
epoxy matrix [26]. It is well known that the broad complex band of the hydroxyl stretching vibration
region at about 3200–3600 cm−1 is attributed to the combined effect of the differently associated
hydroxyl groups, i.e., hydrogen bonding between hydroxyl and hydroxyl/carbonyl groups of different
strength and hydrogen bonding of water molecules. In addition, a matrix having O–H groups could
undergo two modes of hydrogen bonding; inter- and intramolecular hydrogen bonds between O–H
groups [27]. Consequently, it could be concluded that incorporating 2.0 wt % CNFs in the epoxy matrix
reduced its network formation process via lowering the crosslinking bonds and consequently changed
the ratios of hydrogen bonding modes which lead to different geometry with different force constants
and consequently shifting the wave number absorption value.

Overall, the O–H band intensity decreases and is shifted to a lower wave number. This observed
progressive shift of the (υ O–H) band from about 3410 cm−1 toward lower wave numbers (3320 cm−1)
can be attributed to redistribution in the arrangement of hydroxyl group association due to the different
geometry caused by lowered cross-linked matrix.

To further confirm the above hypothesis, DMA testing was conducted on neat epoxy and
CNFs/epoxy nanocomposites. According to the rubber elasticity theory modified by Nielsen [28],
the crosslinking density was determined from the storage modulus of composites in rubbery plateau
using the following equations [29,30]:

υ =
E

3RT
(5)

where υ is the crosslinking density, E is the storage modulus at (Tg + 50), T is the absolute temperature
of (Tg + 50) K and R is the gas constant. The molecular weight between crosslinks was given using
Equation (6).

Mc =
ρ

υ
(6)

where Mc is molecular weight between crosslinks and ρ is the density of the polymer composite.
The degree of crosslinking Xlink of the polymer composites is suggested as an inverse for the molecular
weight between crosslinks in a unit volume as in Equation (7):

XLink =
1

MC
(7)

The calculated degree of crosslinking Xlink is presented in Figure 7. The results show that
incorporating 0.3, 0.5, 1.0 and 1.5 wt % CNFs in the epoxy resin slightly reduced the crosslinking by
14.8%, 19.7%, 13.8% and 20.5% respectively as can be observed in Figure 4a,b. Such a relatively low
decrease in epoxy crosslinking does not have a significant negative effect on mechanical behavior of
CNFs/epoxy nanocomposites due to the compensation for that decrease with the high increase in
mechanical properties (e.g., modulus of elasticity) by CNFs as fibers in the matrix. On the contrary,
incorporating 2.0 and 2.5 wt % CNFs in the epoxy resin reduced the crosslinking by 44% and 38%
respectively owing to strong interaction between CNFs and the epoxy matrix, leading to degradation
of epoxy crosslinking resulting in sharp drop in elastic modulus. The above analysis, consistent with
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the FTIR observations, proved that the degree of crosslinking plays a significant role in the mechanical
behavior of CNFs/epoxy nanocomposites.

Figure 7. The degree of crosslinking for CNFs/epoxy nanocomposites. 
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The epoxy matrix has inherently poor electrical conductivity. The most effective method to 
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The CNFs/epoxy percolated at 1.5 wt % which was determined by the conventional method, i.e.,
the peak position of dlogσ/dC [31] and the electrical conductivity (σ) at 2.0 wt % is approximately
1.81 × 103 S/m. The illustration in Figure 8 is proposed to explain the mechanism of the percolation
phenomenon. The relatively low aspect ratio of CNFs played an important role in achieving good
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dispersion and resulted in a relatively high percolation limit compared with other nanofillers reported
in the literature [19]. Figure 9 shows the FESEM images for 0.5 and 2.0 wt % CNFs in the epoxy matrix.
The images show the absence of agglomeration of CNFs as an indication of the effective dispersion
process using sonication, shear mixing and mechanical string. Figure 9c shows a close view of 2.0 wt %
CNFs in epoxy with the network formation that exhibited percolation behavior. The blue arrows mark
the conductive network which occurs as the CNFs are getting close to each other, creating electron
paths through the matrix and thus increasing electrical conductivity.
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3.3. Monitoring Damage Propagation of GFRP Composite under Static Tension

The stress-strain curves of GFRP composite coupons with and without 2.0 wt % CNFs under
static tension are presented in Figure 10. It can be observed that the GFRP coupons show nonlinear
behavior for both composites with and without CNFs.
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The source of nonlinearity is in the off-axis direction; the polymer matrix dominates the tension
behavior rather than the fibers [32]. It was also observed that incorporating CNFs had no effect on the
initial elastic modulus. In the off-axis direction, the composite behavior is dominated by the matrix.
At low applied stress (region 1), the contribution of glass fiber shall not be neglected. The relative high
stiffness of glass fiber counteracts the effect of the CNFs. When the applied stress increases (region 2),
the effect of CNFs on the composite behavior starts to appear through interlaminar debonding taking
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place as a result of reduced fiber-matrix bond due to reduced crosslinking. This is reflected in region
2 and in the decreased stiffness of CNFs/GFRP coupons compared with GFRP composite with neat
epoxy. At high applied stress levels (region 3), another effect of CNFs becomes apparent. The reduced
polymer crosslinking results in softer matrix compared with neat polymer matrix. Such softening
in the polymer matrix limits its ability to restrain lateral fiber movement under tension loads, thus
an apparent necking like behavior takes place. This behavior is very pronounced with CNFs/GFRP
coupons compared with GFRP coupons with neat epoxy. Such necking results in reduced cross-section
and premature failure (region 4) at relatively lower elongation in CNFs/GFRP compared with neat
GFRP. The right hand side images in Figure 10 show the deformed shape of the off-axis tensile test
for both CNFs/GFRP and neat/GFRP at all four regions. The neck like feature in images 2 and 3
confirms the significant necking like behavior taking place in CNFs/GFRP coupons compared with
GFRP composite with neat epoxy.

Figure 11 shows damage propagation in GFRP composite coupons incorporating 2.0 wt % CNFs
under static tension. The figure shows a comparison between the damage metric observed using
electrical conductivity monitoring and that quantified from the mechanical test using Equation (3).
It is apparent that incorporating CNFs enables monitoring damage initiation and propagation with
reasonable accuracy. Furthermore, both metrics increased gradually and reached a relatively flat
plateau showing constant damage in GFRP at the peak stress. However, it can also be observed that
the mechanical damage value was always higher than the electrical damage value for the same stress.
The mechanical damage increase rate (damage propagation) is much higher for the mechanical damage
metric compared with the electrical damage metric. For instance, at 40 MPa (representing about 40% of
off-axis strength of GFRP), a significant level of mechanical damage metric (about 30%) is observed in
the GFRP coupon compared with a very limited damage (about 5%) observed by the electrical damage
metric. The difference between the mechanical and electrical damage metrics can be explained by the
difference in significance of microcracks and microcrack propagation on elastic modulus and electrical
conductivity. While the elastic modulus is known to be significantly affected by cracking [33], the
electrical conductivity might not be influenced at the same rate by cracking as long as alternative
electrically conductive paths can be found in the matrix. This means that using CNFs will provide
means of monitoring damage initiation and propagation in GFRP but it might not be as sensitive to
damage occurrence and propagation as mechanical damage. In essence, calibration of the two metrics
might be necessary if electrical conductivity is to be used to monitor damage propagation in GFRP
incorporating CNFs. Nevertheless, it is important to note that such damage initiation and propagation
monitoring is not possible in neat GFRP composites due to being non-conductive.
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4. Conclusions

The mechanical and electrical properties of epoxy incorporating CNFs were examined. The results
of the electrical measurements show that CNFs can significantly improve the electrical conductivity of
epoxy. It was also observed that a significant improvement in the electrical conductivity of CNFs/epoxy
nanocomposite is achieved with a percolation threshold equal to 1.5 wt %. The electromechanical
behavior of GFRP incorporating 2.0 wt % CNFs was then examined under monotonically increased static
loading. Electromechanical measurements of GFRP coupons under off-axis static tension tests showed
that electrical damage based on the change in electrical conductivity of GFRP can be correlated well with
growing damage in the GFRP coupons under static tension loads. The measurements also showed that
damage propagation monitoring in CNFs/GFRP using electrical conductivity has a lower sensitivity than
mechanical damage propagation. This might be attributed to the pronounced effect of microcracking
on mechanical behavior compared with its influence on electrical conductivity. Nevertheless, it is
evident that using CNFs during fabrication of GFRP composites allows damage initiation and damage
propagation in GFRP to be monitored with acceptable repeatability and resolution.
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