Supplementary Materials: Distribution of Iron Oxide Core-Titanium Dioxide Shell Nanoparticles in VX2 Tumor Bearing Rabbits Introduced by Two Different Delivery Modalities

Tamer Refaat, Derek West, Samar El Achy, Vamsi Parimi, Jasmine May, Lun Xin, Kathleen R. Harris, William Liu, Michael Beau Wanzer, Lydia Finney, Evan Maxey, Stefan Vogt, Reed A. Omary, Daniele Procissi, Andrew C. Larson, Tatjana Paunesku and Gayle E. Woloschak

Figure S1. Cryogenic transmission electron microscopy (Cryo-TEM) of nanoparticles deposited onto and frozen on lacey carbon TEM grid at magnification: (Top left) 6000×; and (top right) 8000×. (Bottom Left) Excerpt from a 10,000× image of the same grid. Slightly darker areas of the nanoparticle correspond to iron oxide core particles. Overall, shapes and sizes of both core nanoparticles and core-shell nanoparticles were variable. This is in keeping with results of colloidal TiO₂ synthesis we have done in the past, both for pure TiO₂ nanoparticles and for particles containing Fe₃O₄ shells [1–13].
Figure S2. (a) Two VX2 tumors implanted in left lobe of rabbit liver after gross necropsy. (b) Representative selective hepatic artery X-ray DSA contrast in rabbit liver showing: hepatic artery distribution (b-1); and VX2 tumors perfusion (b-2). We have used X-Ray digital subtraction angiography (DSA) imaging to help us guide transarterial intra-catheter delivery to liver tumors as has been done in the past.
Rabbit 1 – TC Injected Rabbit

VX2 Tumor H&E Stain VV2 Tumor Histochemical Stain

Liver H&E Stain Liver Histochemical Stain

Spleen H&E Stain Spleen Histochemical Stain

Lung H&E Stain Lung Histochemical Stain

Kidney H&E Stain Kidney Histochemical Stain
Rabbit 2 – TC Injected Rabbit

VX2 Tumor H&E Stain
Liver H&E Stain
Spleen H&E Stain
Lung H&E Stain
Kidney H&E Stain

VX2 Tumor Histochemical Stain
Liver Histochemical Stain
Spleen Histochemical Stain
Lung Histochemical Stain
Kidney Histochemical Stain
Rabbit 3 – TC Injected Rabbit

VX2 Tumor H&E Stain

Liver H&E Stain

Spleen H&E Stain

Lung H&E Stain

Kidney H&E Stain

VX2 Tumor Histochemical Stain

Liver Histochemical Stain

Spleen Histochemical Stain

Lung Histochemical Stain

Kidney Histochemical Stain
Rabbit 4 – IV Injected Rabbit

- VX2 Tumor H& E Stain
- VX2 Tumor Histochemical Stain
- Liver H& E Stain
- Liver Histochemical Stain
- Spleen H& E Stain
- Spleen Histochemical Stain
- Lung H& E Stain
- Lung Histochemical Stain
- Kidney H& E Stain
- Kidney Histochemical Stain
Rabbit 5 – IV Injected Rabbit

VX2 Tumor H&E Stain VX2 Tumor Histochemical Stain

Liver H&E Stain Liver Histochemical Stain

Spleen H&E Stain Spleen Histochemical Stain

Lung H&E Stain Lung Histochemical Stain

Kidney H&E Stain Kidney Histochemical Stain
Rabbit 6 – IV Injected Rabbit

VX2 Tumor H&E Stain

VX2 Tumor Histochemical Stain

Liver H&E Stain

Liver Histochemical Stain

Spleen H&E Stain

Spleen Histochemical Stain

Lung H&E Stain

Lung Histochemical Stain

Kidney H&E Stain

Kidney Histochemical Stain
Control 1 - Not Injected Rabbit

Liver H&E Stain

Liver Histochemical Stain

Spleen H&E Stain

Spleen Histochemical Stain

Lung H&E Stain

Lung Histochemical Stain

Kidney H&E Stain

Kidney Histochemical Stain
Figures S3. Side by side comparison of tissue overview images obtained with hematoxylin and eosin (H&E) staining and histochemical staining for nanoparticles based on dopamine attachment to nanoparticles in situ. Details of these images are presented in Figures 2 and 3.

© 2016 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).