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Abstract: Uniform deposition of nanofibers in the massive electrospinning process is critical in the
industrial applications of nanofibers. Tip-Induced Electrospinning (TIE) is a cost-effective large-scale
nanofiber-manufacturing method, but it has poor deposition uniformity. An auxiliary conductive
electrode connected to the emitting electrode was introduced to improve the deposition uniformity
of the nanofibers. The effects of the auxiliary electrode shape, the tilted angles and the position of
the boat-like electrode on the electric field distribution, the diameter of the nanofibers, the jet control
and the deposition uniformity were explored by using finite element analysis of the electric field and
experiments. Experiments showed that the boat-like electrode at 20 mm above the reservoir bottom
with a 5˝ tilted angle helped to decrease the relative deposition error of nanofibers in the greatest
extent to about 5.66%, indicating such an auxiliary electrode is a good candidate method to greatly
improve the deposition uniformity of nanofibers in massive electrospinning.

Keywords: electrospinning; auxiliary electrode; deposition uniformity

1. Introduction

Electrospinning is a bottom-up, facile, versatile and pure mechanical stretching technique to
fabricate nanofibers and it has garnered much attention for about 20 years. Due to the excellent
properties of high surface area to volume and high porosity, electrospun nanofibers can be widely
applied in filtration [1], separators for batteries [2,3], energy harvesting [4,5], sensors [6] and so on.
Many literatures about massive electrospinning have been reported to improve nanofiber productivity
and great progress has been achieved [7–11]. Naturally, multiple spinnerets electrospinning with
different arrangements have been explored and it was found that the jets are greatly affected by the
changed electric field [12]. The electric field interference between the adjacent spinnerets would lead
to a clog problem, while needle-less electrospinning can avoid such a problem. Elmarco used moving
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metallic wires as emitting electrodes to realize continuous production and has developed a series
of the commercial setup Nanospider™ based on the patent technology [13]. The wires are parallel
and their gap distance is set to be several centimeters. Our previous work proposed a method called
Tip-Induced Electrospinning, where a tips array is utilized to dip into the polymer solution surface
and draw away periodically to induce the generation of Taylor cones therein, and then multi-jets
issue from the vertexes of the Taylor cones to gain a productivity of about 2 g/h from a solution
surface area of 5 cm ˆ 12 cm [14]. It is characterized to be of lower driving voltage threshold, easy
scale-up and high throughput for each jet. However, the deposition uniformity of the nanofiber
membrane is poor because many jets travel randomly to the collector and some jets even get to the
supporting platform. Thus, it inhibits their industrial applications that need good thickness uniformity,
for example separators for Li-ion batteries and filtration membranes.

Some methods have been brought forward to enhance deposition uniformity. Yang et al. used a
conductive spherical-hat target as an electrospinning collector to change the electric field to achieve
greatly improved uniformity [15]. Zheng et al. designed a two-step spinneret which can enhance the
electric field density in the center area of the plate spinneret, and a curved collector which creates a
more uniform surface electric field [16]. However, these methods are not suitable for large-area and
roll-to-roll industrial production. Until now, the uniform deposition method of massive electrospinning
has rarely been discussed and still remains a challenge.

In this paper, an auxiliary conductive electrode connected to the emitting electrode is introduced
to Tip-Induced Electrospinning (TIE) to improve the deposition uniformity of nanofibers. TIE without
and with three different auxiliary electrode shapes (plain, rectangular and boat-like) is chosen to
explore the electric field distribution between electrodes, respectively, by finite element analysis (FEA)
and the effects of shape and location of the auxiliary electrode on the morphologies of the nanofibers,
the jet trajectory and the deposition uniformity, etc., are discussed. We aim to offer an easy and effective
way to gain the uniform deposition of nanofibers in massive electrospinning.

2. Electric Field Simulation

The Tip-Induced Electrospinning process is presented in Figure 1a–d, in which tips are dipped
into polymer solution and withdrawn quickly. Then Taylor cones can be formed from the solution
surface where the tips left because of the adhesion of the polymer solution to the tips. After the tips
move away, jets will come into being easily from the top of the Taylor cones with the help of the
electric field force. The jets during the TIE process often travel to the surrounding area. Therefore,
different shapes of auxiliary electrodes were designed to change the electric field nearby to control
the trajectory of the jets, and the uniformity of the electric field was simulated by commercial FEA
software to optimize the structure. The geometries of the FEA models were built according to the
experimental setup and three different shapes of additional conductive electrode structures are shown
in Figure 2. In all simulations, a voltage of 40 kV was applied to the metallic solution reservoir and the
auxiliary electrode, and the collector was connected to the ground earth.
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Figure 2. Different shaped diagrams of the conductive auxiliary electrodes around the solution
reservoir: (a) plain; (b) rectangular circle; and (c) boat-like; the tilted angle is denoted by α.

The effect of the auxiliary electrode on the electric field was discussed at first by using a boat-like
auxiliary electrode at the bottom of the solution reservoir with a 15˝ tilted angle. As depicted in
Figure 3, the simulation results of the electric field distribution in TIE between the models with and
without an auxiliary electrode are quite different. Figure 3a,b show that the maximum electric field
along the x-axis (Ex) in TIE without any auxiliary electrode at the heights of 1 mm, 10 mm, 20 mm and
50 mm above the solution surface is 890 V/mm, 229 V/mm, 141 V/mm and 70 V/mm, respectively,
which are stronger but the electric field uniformity is poor. Figure 3c indicates that the introduction of
an auxiliary electrode makes vector arrows near the edge of the reservoir become more vertical. In
addition, the maximum Ex at the corresponding height decreases to 203 V/mm, 53 V/mm, 33 V/mm
and 18 V/m, respectively, as shown in Figure 3d. It can be concluded that the auxiliary electrode
successfully decreases the maximum Ex and improves the electric field uniformity.
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Figure 3. Electric field distribution without auxiliary electrode in (a) and (b) and with a boat-like
electrode in (c) and (d); (b) and (d) show the x component electric field strength (absolute value) along
the width of the reservoir with different heights above the solution surface.

Since the auxiliary electrode has been proved to be effective in improving the distribution of the
electric field, different shapes were designed and optimized to achieve the most uniform electric field.
The electric field is expected to have a smaller x component (Ex) and a more uniform y component (Ey).
Considering that the jetting area (from ´120 mm to 120 mm along the x-axis) near the solution of the
real setup is smaller than the width of the reservoir (from ´150 mm to 150 mm along the x-axis), the
Ex caused by the electric edge effect at a lower height (as shown Figure 3d, h = 1 mm, black curves) is
nearly zero in the jetting area. Although the jetting area grows larger with the increasing height, the Ex

also becomes too weak to influence the jets. So the electric field at h = 10 mm was chosen to evaluate
the electric field uniformity in different conditions.

In view of the symmetry of the model, the electric field distribution in the positive direction was
enough to express all the information about the electric field strength. Ex and Ey caused by different
shapes are described in Figure 4. The simulation results illustrated that the maximum Ex value was
229 V/mm, 74 V/mm, 70 V/mm and 53 V/mm for the TIE without the auxiliary electrode and with
plain, rectangular and boat-like electrodes, respectively. It is obvious that the boat-like electrode
resulted in a smaller Ex and a more uniform Ey distribution at 10 mm above the solution surface (near
the first peak). The plain auxiliary electrode causes a smaller Ex beside the reservoir (the second peak),
but it has little influence on the jets because this area is away from the jets’ trajectory. Thus, a boat-like
auxiliary electrode is considered a better choice if only the electric field is considered.
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Figure 4. (a) x and (b) y component of electric field strength distribution at 10 mm above the solution
surface with and without different shapes of auxiliary electrodes.

Furthermore, the tilted angle and the position of the boat-like auxiliary electrode also affected the
electric field. As described in Figure 5, three different tilted angles (α “ 5˝, 10˝, 15˝) and two positions
were set to study the best geometry. It indicated that if the boat-like auxiliary electrode was at the
bottom of the reservoir (bt for short), the maximum Ex was 74 V/mm, 65 V/mm and 52 V/mm for the
tilted angles of 5˝, 10˝ and 15,˝ respectively. When the auxiliary electrode was raised 20 mm above
the bottom (rs, for short), the maximum Ex can be reduced to 36 V/mm, 35 V/mm and 29 V/mm
for the corresponding tilted angle. It is obvious that a larger tilted angle and higher position lead to
a smaller Ex and a more uniform Ey distribution, respectively. However, Ey was slightly reduced at
the same time, which brings a negative effect for the formation of jets and nanofibers. A boat-like
auxiliary electrode with a tilted angle 15˝ at 20 mm above the reservoir bottom seems to be the best
choice according to the FEA simulation results. Whether it agrees with the experimental results was
then demonstrated.Nanomaterials 2016, 6, 135 5 of 11 
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electrode was (c) at the bottom and (d) at 20 mm above the reservoir bottom.



Nanomaterials 2016, 6, 135 6 of 12

3. Experiments and Discussion

3.1. Materials and Methods

Poly (ethylene oxide) (PEO, Mn = 300,000, Huagao Jingxi Chemical, Changchun, China), which
was inclined to spin at moderate potentials in direct current mode [17], was dissolved in the mixture
of deionized water and ethanol with mass ratio of 3:1 to obtain the polymer solution of a concentration
of 16 wt. %.

As seen in Figure 6, the TIE setup consists of a collector (not shown), an inducing component,
a high-voltage source (only power lead was shown), a solution reservoir and an auxiliary electrode.
The collector was composed of a grounded metal mesh, a long cloth to collect nanofibers and a winding
device to realize continuous movement of the cloth. The inducing component contains a bar with
arrayed inducing needles, which was driven by a motor through the crank and a bar linkage. The
solution reservoir consists of a metal sheet and a plastic shell. Thereinto, the solution reservoir was
300 mm in length and 60 mm in width and the plastic shell was 20 mm in depth. The anode and cathode
of the high voltage source (ES80P-20W/DDPM, Gamma, Ormond Beach, FL, USA) were respectively
connected to the solution reservoir and the grounded metallic mesh. There are 13 inducing needles
with 0.295 mm in diameter and 20 mm gap distance between needles along the inducing bar. Due to
the continuous deposition in large-scale production process, the moving direction of the collector is
perpendicular to the length of solution reservoir and the deposition uniformity of nanofibers does
not need to be considered. In order to evaluate the deposition uniformity, as illustrated in Figure 7a,
six 5 cm ˆ 5 cm aluminum foils were evenly attached onto the collector, which width is 60 cm, in a line
to receive PEO nanofibers. And Figure 7b shows the real arrangement of the collector belt.

Three different shapes of auxiliary electrodes connected to the solution reservoir were then
made. PEO solution was held in the solution reservoir. The applied voltage was set to be 40 kV and
the working distance between solution reservoir and grounded collector was 40 cm. The driving
frequency of the inducing component was about 5/6 Hz and the electrospinning time was set to 15 min.
During the experiments, the ambient temperature and humidity were kept around 23 ˝C and 40%
RH respectively.
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Figure 7. (a) Schematic diagram of six equally distributed samples on the collector. The collector is
60 cm in width. The arrow represents the moving direction of the collection cloth. (b) A photograph of
the arrangement of the collector belt.

A digital camera (Canon D500, Canon INC, Tokyo, Japan) was used to record the trajectory of
initial jet and the morphologies of PEO nanofibers were characterized by scanning electron microscopy
(SU 70, Hitachi, Japan) after being sputtered with a thin layer of gold. The mass of all samples was
measured by electronic balance (BS124, Sartorius Co., Göttingen, Germany) after drying at 50 ˝C for
30 min in the incubator.

3.2. Results and Discussion

Morphologies of fibers. The effect of the auxiliary electrode shape on the morphologies of the
electrospun PEO nanofibers by TIE was investigated without and with three different shapes (plain,
rectangular and boat-like) of electrodes, respectively. From the scanning electron microscope (SEM)
images in Figure 8, it can be seen that the diameter of the fibers varies in a range from 0.7 µm to
2.9 µm, and the mean diameter of the fibers from TIE without and with plain, rectangle and boat-like
electrodes is 1.32 µm, 1.46 µm, 1.40 µm, and 1.51 µm, respectively. The diameter of the fibers from
TIE without the additional electrode is the smallest and the largest mean diameter is from TIE with
a boat-like electrode. Such a phenomenon is mainly attributed to the reduction of the electric field in
the y direction with auxiliary electrodes as shown in Figure 4b, which decreases the electric pulling
force on the as-spun fibers.
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Figure 8. Scanning electron microscope (SEM) images and diameter distributions of poly (ethylene
oxide) (PEO) fibers fabricated by TIE with different structures of the additional metal electrode:
(a,b) none, (c,d) plain, (e,f) rectangular circle, (g,h) boat-like.

Initial jet trajectories. The visible initial jet trajectories greatly affect the deposition uniformity of
the nanofibers and they are characterized by the deflection angles of the jet at the edge of the reservoir
from the y-axis because the deflection angle of the jets there is the biggest. If the deflection angle is zero,
it means that the initial jets travel vertically and the nanofibers will be deposited evenly on the collector
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with a width of about 30 cm. As shown in Figure 9, when TIE was carried out with plain, rectangle
and boat-like shaped electrodes with 5˝, 10˝ and 15˝ tilted angles and without an auxiliary electrode,
the deflection angles of the jets were 41.0˝, 40.5˝, 40.9˝, 39.6˝, 33.6˝, and 61.0˝, respectively. We can
draw a conclusion that the boat-like electrode could reduce the reflection angle most greatly and the
boat-like auxiliary electrode with a larger tilted angle will lead to a smaller β. Furthermore, when
the boat-like auxiliary electrode was set at 20 mm above the bottom of the reservoir, the deflection
angle could be decreased further to about 29.4˝. Therefore, the minimum deflection angle could be
achieved by using a boat-like electrode at 20 mm above the reservoir bottom with a tilted angle of 15˝.
This phenomenon is due to the reduction of Ex as illustrated in Figures 4a and 5c. However, the initial
deflection angle is only one of the factors that influence the deposition uniformity; therefore, a direct
study of the deposition uniformity may be needed.
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Uniformity of deposition. We aim to find out the best way to improve the deposition uniformity of
nanofibers. In order to examine whether it works in a real situation, all the fibers from TIE with no
electrode or a boat-like electrode with a 15˝ tilted angle were shown in Figure 10a,b, respectively, which
presented that the auxiliary electrode can effectively improve the deposition uniformity. To investigate
the deposition uniformity from TIE with different auxiliary electrodes quantitatively, six pieces of
5 cm ˆ 5 cm aluminum foils were attached onto the collector as shown in Figure 7 along the X-axis.
Then the mass of nanofibers deposited on these samples within 15 min was measured to evaluate the
uniformity of the deposition. The samples would contact the surface of an Al plate to release the static
charges before being weighed in. The standard deviation of the mass of nanofibers on these samples
was calculated by the following equation:

σ “

g

f

f

e

1
6

6
ÿ

i“1

pmi ´maq
2

where σ is the standard deviation; mi (i = 1, 2, 3, ¨ ¨ ¨ 6) represents the mass of nanofibers being collected
on these different samples per hour in the unit area, which can be regarded as the deposition efficiency;
ma is the average of all mi; and σ{ma. was used to measure the deposition uniformity. Just as presented
in Figure 10c, the mass in the center place is higher than that of the area. The average deposition
efficiencies are 3.9, 6.4, 7.3 and 11.8 g/h¨m2 from TIE without any additional electrode and with
plane, rectangular and boat-like auxiliary electrodes. It is obvious that auxiliary electrodes can greatly
increase the deposition efficiency of nanofibers to various degrees. Among these shapes, the boat-like
auxiliary electrode can obtain the highest efficiency and the smoothest mass distribution of nanofibers.
The increased deposition efficiency is attributed to the more vertical electric field distribution, which
can make more fibers deposit onto the collector rather than travel to the side.
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Figure 10. (a) The photograph of fibers on the continuous collector from TIE with no auxiliary electrode;
(b) with a boat-like electrode with a 15˝ tilted angle electrode at the bottom. The length of the collector
is 60 cm; (c) deposition efficiency distribution along x-axis for different shapes of auxiliary electrodes;
(d) the average deposition efficiency and relative deposition deviation with different tilted angles and
positions for boat-like electrodes.

In order to determine the optimal geometry of the boat-like electrode, different tilted angles and
positions of the boat-like electrode were then explored. As shown in Figure 10d, the average deposition
efficiencies (ma) are 11.8, 12.7 and 13.0 g/h¨m2 when the tilted angle is set as 5˝, 10˝ and 15˝, indicating
that ma increases a little with the tilted angles. The boat-like electrode rose up with a height of 20 mm,
and the average deposition efficiency is 11.8, 12.8, 15.2 g/h¨m2 at the corresponding tilted angle. It
should be attributed to the decrease of Ex as shown in Figure 5a, which allows more nanofibers to reach
the collector. However, the relative deviation (σ{ma) also increased greatly from 8.57% (5.66%) to 17%
(30.2%) as the tilted angle increased from 5˝ to 15˝ at the “bt (rs)” position. Therefore, considering the
deposition efficiency and the deposition uniformity, the optimal electrode structure is a boat-like shape
with a tilted angle of 5˝ at 20 mm above the bottom of the reservoir, which can reduce the relative
deviation from 39.9% with no auxiliary electrode to 5.66%. Thus, utilizing an auxiliary electrode can
enhance the deposition uniformity greatly.

4. Conclusions

In this work, an auxiliary conductive electrode was introduced to the Tip-Induced Electrospinning
process to improve the uniformity and efficiency of the deposition of fibers. Three different shapes
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of auxiliary electrodes were used to study their effect on the electric field uniformity, nanofiber
diameter, jet deflection angle, deposition uniformity and efficiency. The simulation results show that
the boat-like auxiliary electrode with a larger tilted angle most improved the uniformity of the electric
field. Experimental results presented that the introduction of a boat-like auxiliary electrode at 20 mm
above the reservoir bottom with a 5˝ tilted angle reduces the deflection angle of the jets from 61˝

to 29˝ and the production efficiency of the nanofibers on the collector can be enhanced from 3.87 to
11.8 g/h¨m2. Therefore, the introduction of a boat-like auxiliary electrode to massive electrospinning
may be a new method for improving the deposition uniformity of nanofibers.
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