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Abstract: With global concerns about the shortage of fossil fuels and environmental issues,
the development of efficient and clean energy storage devices has been drastically accelerated.
Nanofibers are used widely for energy storage devices due to their high surface areas and porosities.
Electrospinning is a versatile and efficient fabrication method for nanofibers. In this review, we mainly
focus on the application of electrospun nanofibers on energy storage, such as lithium batteries, fuel
cells, dye-sensitized solar cells and supercapacitors. The structure and properties of nanofibers are
also summarized systematically. The special morphology of nanofibers prepared by electrospinning
is significant to the functional materials for energy storage.
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1. Introduction

Energy conversion and storage devices have drawn significantly attention with fossil fuels
depleting, climate change, and environment deterioration. Although some devices have realized
commercialization, new breakthroughs are needed to improve their performance, including durability,
harvest efficiency, power density and conversion efficiency.

Nanofiber (NF) materials have been extensively studied as constituent parts of energy conversion
and storage devices. Currently, much effort has been devoted to developing nanostructured
materials synthesized by different methods, including chemical vapor deposition [1], wet chemical
synthesis [2], sol-gel templating [3], self-assembly [4], the molten salt method [5–17], the polymer
precursor method [18–23] and electrospinning. Among these methods, electrospinning, as a versatile,
efficient and low-cost method, has been used widely to synthesize many special NFs with different
morphologies, including core-shell [24], hollow [25], multilayer [26], porous [27], etc. Combined with
the high surface area, controllable porosity and ease of accessibility, the electrospun NFs have come to
have important roles in various energy storage fields.

In this review, we focus specifically on the application of electrospun NF materials in lithium-based
batteries, fuel cells, dye-sensitized solar cells and supercapacitors.

2. Electrospinning

The electrospinning technique is a versatile, efficient, and low-cost method for NFs’ fabrication,
which traces its roots back to an initial patent on the fabrication of textile yarns by Formhals in 1934 [28].
However, electrospinning did not become a popular technique. This technique was not revived until
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the 1990s, when several research teams (especially that of Reneker) found that it could be used to
prepare NFs from many organic polymer solutions [29]. After that, the electrospinning technique has
been further developed.

A general electrospinning apparatus consists of a high voltage power supply, a syringe with a
metallic needle with blunt-tip, and a grounded conductive collector, as shown in Figure 1. A high
voltage electrostatic field is used to charge the surface of the polymer solution droplet. When the
electrical forces overcome the surface tension and viscosity of the fluid, a liquid jet is ejected through the
needle tip. The shape of the Taylor cone is influenced by the applied voltage. Within the evaporation
of the mobile solution from the fluid jet to the collector, uniform NF mats form on the collector [30–32].
The types of collectors include a rotating drum, a metal frame, and a rotating mandrel, which can
influence the alignment of electrospun NFs [33].
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Figure 1. Schematic diagram of an electrospinning set-up.

The properties of the fabricated NFs depend on the operating parameters, such as applied voltage,
solution feed rate, spinning distance, environmental temperature, humidity, air velocity in the chamber,
polymer molecular weight, solution conductivity, viscosity and surface tension. By adjusting the
parameters, different morphologies of the NFs can be obtained [34–36]. The industrial development
of electrospun NFs is at the starting stage. The NFs have potential in some fields, such as high
temperature filtration, efficient catalysis, biology, tissue engineering, optoelectronic devices, and
aerospace equipment [37].

3. Applications

Electrospun NF materials were applied widely in many fields due to their high surface
area, good crystalline structure and superior kinetic property. In this section, we discuss the
applications of electrospun NFs in lithium-based batteries, fuel cells, dye-sensitized solar cells and
supercapacitors. The influences of the structures and the properties for NFs on these applications are
also systematically summarized.

3.1. Lithium-Based Batteries

According to the development course of lithium-based batteries, there are three critical battery
systems, including Li-ion batteries (LIBs) (Figure 2a), lithium-sulfur batteries (LSBs) (Figure 2b) and
lithium-oxygen (Li-O2) batteries (Figure 2c). As one of the most important energy storage systems, the
Li-ion battery (LIB) has been used not only in portable electronics [38], but also in power batteries for
electric vehicles now. Simultaneously, to meet the demands of all-electric vehicles in the long term [39],
researchers have been devoted to developing other battery systems with lithium metal as the anode
material to improve the energy density, such as LSB and Li-O2 batteries. Certainly, the application of
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NF materials on these three lithium-based batteries plays a fundamental role to improve the energy
density. In this section, we focus on the application of NFs on the LIB, LSB, and Li-O2 battery systems.Nanomaterials 2016, 6, 129 3 of 29 
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3.1.1. Li-Ion Batteries

At present, for the commercial LIBs, the electrode materials usually are based on powder materials.
The long migration pathways for the Li+ of powder materials may lead to the large volume expansion
occurring during cycling, resulting in the low rate of performance and poor cyclability [38]. NF
materials are promising materials for LIBs because of their good electrochemical activity, high
mechanical strength, and large specific surface area. In this section, recent advances in the areas
of electrospun NFs as cathodes, anodes, and separator materials for LIBs are briefly summarized.

Cathode Materials

LiCoO2 is the first commercial cathode material for LIBs [40]. Jiao et al. [41] synthesized LiCoO2

NFs via the sol-gel and electrospinning technique. The LiCoO2 NFs delivered first cycle discharge
capacities of 182 mAh/g (powder-based electrodes with first cycle discharge capacities of 140 mAh/g).
However, LiCoO2 NF electrodes exhibited a poor cyclability. In order to solve this problem, the
core-shell LiCoO2-MgO NFs were prepared through a coaxial electrospinning [42]. The first cycle
discharge capacity of core-shell LiCoO2-MgO NFs was close to that of the bare LiCoO2 NFs. After 40
cycles, the discharge capacity of the core-shell LiCoO2-MgO NFs electrode still remained at 90.0% of
the initial value (bare LiCoO2 NFs with a capacity retention of 52.0%). LiCoO2-MgO NFs can effectively
avoid the increasing of the impedance result from passive surface film formation during cycling.

As a ternary layered material, Li-Ni-Co-Mn-O has attracted considerable interest as the cathode
material for LIBs to replace the commonly-used material LiCoO2 due to its high capacity, good thermal
stability and excellent rate capability [43]. Currently, most prepared Li-Ni-Co-Mn-O have the Li+/Ni2+

cation mixing structure, resulting in depressing of the Li+ mobility, which leads to the poor cyclability
of the cells [44]. In order to overcome this obstacle, electrospun LiNi1/3Co1/3Mn1/3O2 was fabricated,
which was proven to be able to largely improve the cell performance [45–48]. Xiong et al. [45]
prepared LiNi0.5Co0.2Mn0.3O2 with a particle size of 300 nm by the electrospinning method and
LiNi0.5Co0.2Mn0.3O2 with a particle size of 1 um by the sol-gel method. The electrospinning material
exhibited better performance than the sol-gel material, which is mainly attributed to the shorter Li+ and
electron migration distance of the electrospinning material. LiNi1/3Co1/3Mn1/3O2 NFs were obtained
by electrospinning poly(vinylpyrrolidone) (PVP) and MNO3 (M = Li, Ni, Co, Mn). The resulting
LiNi1/3Co1/3Mn1/3O2 NFs showed a high first charge and discharge capacity of 217.93 mAh/g
and 172.81 mAh/g, respectively [46]. Electrospun PVP and M(CH3COO)2 (M = Li, Ni, Co, Mn)
fibers can yield a Li-rich Li1.2Mn0.54Ni0.13Co0.13O2-encapsulated carbon nanofiber (CNF) network
(Li1.2Mn0.54Ni0.13Co0.13O2/CNF) that exhibited a high coulombic efficiency of 83.5% and a discharge
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capacity of 263.7 mAh/g [47]. The Li-rich Li1.2Ni0.17Co0.17Mn0.5O2 were also synthesized by the
electrospinning technique, with PVP and polyvinyl acetate (PVAc) as different polymer sources [48].
The morphology of Li1.2Ni0.17Co0.17Mn0.5O2 NFs has depended on the different heat temperatures
and the polymer used. The result shows that the porous nanostructure morphology can enhance the
initial discharge capacity of the electrospun samples.

LiFePO4 was discovered by Goodenough in 1997, which possesses high discharge potential, large
specific capacity (170 mAh/g) and good thermal stability [49]. However, LiFePO4 has low conductivity
(~10´9 S/cm) and low rate capability due to the one-dimensional twisted channel of Li+ [50]. Particle
nanocrystallization is supposed to be an effective method to shorten the diffusion channels. Thus,
the LiFePO4/C composite NFs were prepared via electrospinning, with polyacrylonitrile (PAN) as
polymer additives, which showed a good cyclability [51]. Interestingly, a slight increase of capacity
was exhibited rather than the capacity fading after several cycles, which could be attributed to slow
electrolyte penetration into the electrode or the crack formation on the amorphous carbon layer during
cycling that increases the surface area of NFs and improves the electrode-electrolyte interaction.
LiFePO4/carbon nanotube (CNT)/C composite NFs also were obtained via the combination of
electrospinning and sol-gel methods, with PAN as the electrospinning media and carbon source [52].
The result shows that electrospinning is an effective method for minimizing the aggregation of LiFePO4

particles and promoting the formation of a conducting carbonaceous layer on the LiFePO4 surface.
CNTs were well-dispersed in the carbonaceous matrix, which can help increase the electrochemical
performance of the LiFePO4 cathodes by forming conducting bridges between LiFePO4 particles
and enhancing the electron transport of the system. In another format, triaxial LiFePO4 nanowires
(NWs) with a multiwall CNT core column and an outer shell of amorphous carbon were successfully
synthesized with the electrospinning method [53]. The model image of the material is demonstrated in
Figure 3. The CNT core oriented in the direction of the wire played an important role in the conduction
of electrons during the cycling; the outer amorphous carbon shell suppressed the Fe2+ oxidation.
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and the two layer shells: an outer shell of amorphous carbon and an inner composite shell of LiFePO4

and amorphous carbon. Reproduced with permission from [53]. Copyright American Physical
Society, 2010.

At the current stage, for a commercial battery, the cathode materials usually participate in a
one-electron reaction, which inevitably limits the practical capacity [54]. Therefore, one promising
approach to increase the delivered capacity is to develop a material that involves a two (or
more)-electron reaction. Vanadium pentoxide (V2O5) has attracted particular attention because of the
availability of the two-electron V5+–V3+ couple and its low cost, ease of synthesis, rich abundance, as
well as its relatively high theoretical capacity (about 294 mAh/g with 2 Li+ insertions/extractions per
unit formula) [55]. V2O5 NFs were synthesized by a hydrothermal treatment of electrospun PMMA
and vanadium oxide NFs [56]. The delivered discharge capacity for the first cycle in an LIB with V2O5
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NFs was 350 mAh/g. In addition, the capacity was maintained above 240 mAh/g after 25 cycles. The
hierarchical V2O5 NFs with diameters of 200–400 nm were obtained via electrospinning combined
with annealing, with PVP as the electrospinning media [57]. After 100 cycles, the specific capacity of
the V2O5 NFs retains 133.9 mAh/g at a current density of 800 mA/g, corresponding to a high capacity
retention of 96.05%. The ultra-long hierarchical V2O5 NWs with diameters of 100–200 nm were also
prepared using PVA and low-cost raw materials by electrospinning combined with annealing [58]. The
initial discharge capacities of the ultra-long hierarchical V2O5 NWs were up to 390 within a potential
range of 1.75–4.0 V. In another study, electrospun PVP and a low-cost inorganic vanadium precursor
can yield porous V2O5 NTs that showed good cycling performance; the capacity retention is 97.4%
after 200 cycles at 50 C [59].

LiMn2O4 [60], Li3V2(PO4)3 [61,62] and LiNi0.5Mn1.5 [63–65] NFs as cathode materials were also
prepared by electrospinning, which exhibited high capacity and good cyclability. This indicates that
the NFs with a shorter Li+ and electron migration distance can provide fast Li+ intercalation and
de-intercalation channels. The overview of some electrospun fibers as cathode materials of LIBs and
their electrochemical performances is presented in Table 1.

Table 1. Electrospun cathode materials for Li-ion batteries (LIBs) and the corresponding electrochemical
performance. DC: Discharge capacity.

Material Diameter/µm Structure DC (after Cycle
Number)/mAh¨ g´1 Rate Reference

LiCoO2 0.5–2 fiber 123 (20) 20 mA/g [41]
LiCoO2–MgO 1–2 core-shell fiber 163 (40) 20 mA/g [42]

LiNi0.5Co0.2Mn0.3O2 0.3 particle 160 (5) 20 mA/g [45]
LiNi1/3Co1/3Mn1/3O2 0.1–0.8 nanofiber 116 (30) 85 mA/g [46]

Li1.2Mn0.54Ni0.13Co0.13O2/CNFs – nanofiber 176.7 (100) 1 C [47]
Li1.2Ni0.17Co0.17Mn0.5O2 0.1–0.5 nanofiber 141–205 (20) 14.2 mA/g [48]

LiFePO4/C – fiber 131–145 (0.1) – [51]
LiFePO4/CNT/C 0.168 nanofiber 169 (average) 0.05 C [52]
LiFePO4/CNT/C – core-shell fiber – – [53]

V2O5 0.2–0.5 nanofiber 240 (25) 0.1 mA/cm2 [56]

V2O5 0.2–0.4 hierarchical
porous nanofiber 133.9 (100) 800 mA/g [57]

V2O5 0.1–0.2 hierarchical
nanowire 201 (30) 30 mA/g [58]

V2O5 0.3–0.5 porous nanotube 130.5 (50) 0.2 C [59]
LiMn2O4 0.17 porous network 146 (1) 0.1 C [60]

Li3V2(PO4)3/CNF 0.3 nanofiber 102 (1000) 20 C [61]
Li3V2(PO4)3/CNF 0.18–0.43 nanofiber 118.9 (1000) 20 C [62]

LiNi0.5Mn1.5O4 <0.2 nanofiber 138 (1) 50 mA/g [63]
LiNi0.5Mn1.5O4 0.05–0.25 nanofiber 120 (50) 0.01 mA/cm [64]
LiNi0.5Mn1.5O4 0.05–0.1 nanofiber 300 (1) 27 mA/g [65]

Anode Materials

Electrospun CNFs are popular anode materials for LIBs due to their low cost, easy availability
and long cycle life [38]. However, LIBs with electrospun CNFs as the anode exhibited relatively low
specific capacity and rate capability [66,67]. Therefore, flexible highly porous CNFs (HPCNFs) [68]
and hollow CNFs (HCNFs) [69] were prepared by the electrospinning method. The HPCNFs delivered
a reversible capacity as high as 1780 mAh/g after 40 cycles at current densities of 50 mA/g [68].
Controlling the mesopores in HCNFs is an effective means to improve the electrochemical performance
of HCNFs [69]. HPCNFs and HCNFs with excellent electrochemical and mechanical properties result
from the novel porous structure, which can provide the good access of the electrolyte to the electrode
surface. Moreover, CNFs complemented with the high lithium storage capacity transition metals
and transition metal oxides were used as anode materials for LIBs, which can result in a higher
electrochemical performance; for example, Ag/CNFs composite by electrospinning PMMA/PAN
and AgNO3 solution in DMF, where Ag NPs were embedded into the hollow CNFs [70]. The LIBs
with Ag/CNFs composite as the anode delivered a capacity of 739 mAh/g at 50 mA/g, with 85%
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capacity retention after 100 cycles. Similarly, GeOx NPs were encapsulated into hollow carbon shells
using co-axial electrospinning [71]. This core-shell structure can alleviate the volume change of
GeOx during cycling, decrease the contact area between electrolyte and GeOx to form a stable solid
electrolyte interface film and increase the electrical conductivity. Cho et al. [72] prepared carbon-coated
Fe3O4 hollow NFs (Fe3O4/C hNFs) and Fe3O4 hNFs via the electrospinning method, annealing and
hydrothermal processing using PVP and Fe(NO3)3. The Li+ diffusion coefficient of the Fe3O4/C
hNFs (8.0 ˆ 10´14 cm2/s) is 60-times higher than that of Fe3O4 hNFs (1.33 ˆ 10´15 cm2/s). The
Fe3O4/C hNFs exhibit superior electrochemical performance compared to that of the Fe3O4 hNFs.
CNF and transition metal oxide composites were also reported, such as Co3O4/CNF core-shell
NWs [73], Mn3O4/CNF [74], GeO2/CNFs [75] and γ-Fe3O4/CNFs [76]. All of the composites are
promising materials, which have important implications for developing high performance anodes for
next-generation LIBs.

Among anode materials for LIBs, silicon (Si) is the most promising candidate because of its high
theoretical lithium storage capacity (~4200 mAh/g) [77]. Nevertheless, the pure Si anode, with the
format of a nanoparticle (NP), NW or membrane, has faced adverse issues on electrode pulverization
and capacity loss during frequent charging/discharging cycles [78]. Carbon/silicon composite was
proved to exhibit a synergistic effect [79]. For example, Si/CNFs with mesopores were prepared by
electrospinning PVA, aluminum acetylacetonate (AACA) and Si in DMF solution [80]. The mesoporous
structure was generated by foaming NFs via AACA sublimation. The LIBs with Si/CNFs as the anode
showed a superior high first discharge capacity of 1639 mAh/g and a good capacity retention of 83.6%.
Xing et al. [81] synthesized pyrolytic carbon-coated Si/C NF (Si/C-CNF) composites by electrospinning
and carbonization, which exhibited a high retention capacity of 1215.2 mAh/g after 50 cycles. An
amorphous carbon layer covering the surface of Si/CNFs (prepared by electrospinning and sintering
PAN and Si) can limit the volume expansion of the exposed Si NPs and prevent Si/CNF;s direct
contact with the electrolyte. It also can create connections between the fibers that are conducive to
Li+ ion transport. In other formats, a core-shell silicon/carbon fiber (Si/po-C@C) was prepared by
simultaneously electrospinning polystyrene (PS)/PAN/Si as the core and electrospinning PAN as the
shell then carbonization [82]. The structural design of the Si/po-C@C composite fiber is demonstrated
in Figure 4. The LIBs with Si/po-C@C composite fiber as the anode exhibited a high initial discharge
capacity of 997 mAh/g and a capacity retention of 71% after 150 cycles at a current density of 0.2 A/g.
A novel flexible 3D Si/C fiber paper electrode was also fabricated via simultaneously electrospraying
nano-Si/PAN clusters and electrospinning PAN fibers then carbonization [83]. The as-prepared
Si/PAN paper and the carbonized Si/PAN paper (3D Si/C fiber paper) exhibited good flexibilities,
as shown in Figure 5a,b, respectively. Figure 5c–f is the SEM micrographs of 3D Si/C fiber paper.
When the novel structure of the 3D Si/C fiber paper was used as an anode for LIB, the LIB exhibited a
high capacity (1600 mAh/g), an excellent rate capability performance and a low capacity loss (0.079%
after 600 cycles).



Nanomaterials 2016, 6, 129 7 of 30

Nanomaterials 2016, 6, 129 6 of 29 

 

hNFs (8.0 × 10−14 cm2/s) is 60-times higher than that of Fe3O4 hNFs (1.33 × 10−15 cm2/s). The Fe3O4/C 

hNFs exhibit superior electrochemical performance compared to that of the Fe3O4 hNFs. CNF and 

transition metal oxide composites were also reported, such as Co3O4/CNF core-shell NWs [73], 

Mn3O4/CNF [74], GeO2/CNFs [75] and γ-Fe3O4/CNFs [76]. All of the composites are promising 

materials, which have important implications for developing high performance anodes for next-

generation LIBs. 

Among anode materials for LIBs, silicon (Si) is the most promising candidate because of its high 

theoretical lithium storage capacity (~4200 mAh/g) [77]. Nevertheless, the pure Si anode, with the 

format of a nanoparticle (NP), NW or membrane, has faced adverse issues on electrode pulverization 

and capacity loss during frequent charging/discharging cycles [78]. Carbon/silicon composite was 

proved to exhibit a synergistic effect [79]. For example, Si/CNFs with mesopores were prepared by 

electrospinning PVA, aluminum acetylacetonate (AACA) and Si in DMF solution [80]. The 

mesoporous structure was generated by foaming NFs via AACA sublimation. The LIBs with Si/CNFs 

as the anode showed a superior high first discharge capacity of 1639 mAh/g and a good capacity 

retention of 83.6%. Xing et al. [81] synthesized pyrolytic carbon-coated Si/C NF (Si/C-CNF) 

composites by electrospinning and carbonization, which exhibited a high retention capacity of 1215.2 

mAh/g after 50 cycles. An amorphous carbon layer covering the surface of Si/CNFs (prepared by 

electrospinning and sintering PAN and Si) can limit the volume expansion of the exposed Si NPs and 

prevent Si/CNF;s direct contact with the electrolyte. It also can create connections between the fibers 

that are conducive to Li+ ion transport. In other formats, a core-shell silicon/carbon fiber (Si/po-C@C) 

was prepared by simultaneously electrospinning polystyrene (PS)/PAN/Si as the core and 

electrospinning PAN as the shell then carbonization [82]. The structural design of the Si/po-C@C 

composite fiber is demonstrated in Figure 4. The LIBs with Si/po-C@C composite fiber as the anode 

exhibited a high initial discharge capacity of 997 mAh/g and a capacity retention of 71% after 150 

cycles at a current density of 0.2 A/g. A novel flexible 3D Si/C fiber paper electrode was also fabricated 

via simultaneously electrospraying nano-Si/PAN clusters and electrospinning PAN fibers then 

carbonization [83]. The as-prepared Si/PAN paper and the carbonized Si/PAN paper (3D Si/C fiber 

paper) exhibited good flexibilities, as shown in Figures 5a,b, respectively. Figure 5c–f is the SEM 

micrographs of 3D Si/C fiber paper. When the novel structure of the 3D Si/C fiber paper was used as 

an anode for LIB, the LIB exhibited a high capacity (1600 mAh/g), an excellent rate capability 

performance and a low capacity loss (0.079% after 600 cycles). 

 

Figure 4. Schematics of the structural design of the core-shell silicon/carbon fiber (Si/po-C@C) 

composite fiber: (a) structural formation and change of Si/po-C@C during heat treatment and cycling 
Figure 4. Schematics of the structural design of the core-shell silicon/carbon fiber (Si/po-C@C)
composite fiber: (a) structural formation and change of Si/po-C@C during heat treatment and cycling
process, respectively; (b) three-dimensional (3D) sketch of the overall structure. (SEI: solid-electrolyte
interphase). Reproduced with permission from [82]. Copyright Royal Society of Chemistry, 2015.
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As an anode material for LIBs, tin (Sn) has attracted considerable interest due to its high theoretical
capacity (990 mAh/g) [84]. However, the volume changes during cycling and the tin NPs aggregate
during the discharging process, resulting in the Sn-based materials’ poor cyclability [85]. To address
these problems, Sn NP-loaded CNF (Sn NP/CNF) [86] and Sn NP-loaded PCNF (Sn/PCNF) [87]
composites were fabricated. The discharge capacity for LIB with Sn/PCNF composite was 774 mAh/g
at a high current density of 0.8 A/g after 200 cycles [87]. Wang et al. [88] prepared Sn@carbon
NPs encapsulated in bamboo-like hollow CNFs (see Scheme 1) by pyrolysis of coaxial tributyltin
(TBT)/PAN electrospun NFs, which contained Sn and C with a weight ratio of 7:3. The LIBs with the
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composite material as the anode displayed a high discharge capacity of 737 mAh/g after 200 cycles at
0.5 C. The high cyclability and capacity retention ratio could be attributed to providing the appropriate
void volume of the composite to respond to the large volume change and to prevent pulverization of
the Sn NPs. The 3D Sn/C hybrid core/shell NFs with micro-/nano-channels were also prepared by
electrospinning, annealing and glucose-hydrothermal processing, with PAN as the electrospinning
media and carbon source [85]. The LIBs with the obtained Sn/C hybrid NFs as the anode displayed a
high initial discharge capacity of 1090.8 mAh/g at a current density of 40 mA/g and a high coulombic
efficiency of nearly 100%. The advantages of this particular 3D core/shell architecture result from the
greatly enhanced lithium storage from enlarging the electrode-electrolyte contact area, shortening the
Li+ migration pathways and enhancing the Li+ and electrolyte diffusion of the active materials during
cycling processes.
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Reproduced with permission from [88]. Copyright Wiley, 2009.

As a promising candidate to replace graphite, metal oxide is believed to contribute to increasing
energy density and decreasing cost [89]. TiO2 is one of the most exciting anode candidates for LIBs
due to its high abundance, nontoxicity and structural integrity during cycling [90]. Nevertheless, TiO2

possesses low intrinsic electronic conductivity, which limits its application [91]. In order to improve the
shortcoming, the TiO2 NFs were synthesized by electrospinning [91–95]. Sigmund et al. [91] obtained
the electrospun TiO2 NFs with anatase and anatase-rutile mixed phase crystallites without carbon
coating and then calcined the electrospun TiO2 NFs under different atmospheres. The results show
that argon-calcined TiO2 NFs exhibited several orders of magnitude higher electronic conductivity.
The anatase TiO2 NF with a fiber-in-tube structure was also reported, with the formation mechanism as
shown in Scheme 2, which exhibited high structural stability during cycling [92]. Ramakrishna et al. [96]
studied electrospun TiO2 nanostructures and their composites with multiwalled CNTs for rechargeable
LIBs. The TiO2/CNT composite showed enhancement in the capacity retention (10–800 cycles)
by increasing the retention from 81% to 92%. To improve the rate capability of TiO2 NFs, the
metal oxide/TiO2 was prepared via electrospinning, such as Co3O4/TiO2 [93], which exhibited high
discharge capacity and an excellent rate capability, resulting from the synergetic effect between Co3O4

and TiO2, as well as the unique feature of hierarchical heterostructures.
The Nb2O5 was also used as the anode material for LIBs [97]. The polymorphs of Nb2O5, including

pseudohexagonal (H-Nb2O5), orthorhombic (O-Nb2O5) and monoclinic (M-Nb2O5), were synthesized
by electrospinning [98]. After annealing, the H-Nb2O5 and O-Nb2O5 phases maintained the fibrous
morphology, whereas the M-Nb2O5 phase adopted a distorted nugget structure. The M-Nb2O5

delivered the highest capacity and exhibited the highest capacity retention compared to the other
two phases. The Li+ diffusion coefficients of H-Nb2O5, O-Nb2O5 and M-Nb2O5 were also studied,
which were in the ranges of 10´17–10´16, 10´15–10´14 and 10´13–10´12 cm2/s, respectively [99]. The
overview of some electrospun fibers as anode materials of LIBs and their electrochemical performances
is presented in Table 2.



Nanomaterials 2016, 6, 129 9 of 30

Nanomaterials 2016, 6, 129 8 of 29 

 

As a promising candidate to replace graphite, metal oxide is believed to contribute to increasing 

energy density and decreasing cost [89]. TiO2 is one of the most exciting anode candidates for LIBs 

due to its high abundance, nontoxicity and structural integrity during cycling [90]. Nevertheless, TiO2 

possesses low intrinsic electronic conductivity, which limits its application [91]. In order to improve 

the shortcoming, the TiO2 NFs were synthesized by electrospinning [91–95]. Sigmund et al. [91] 

obtained the electrospun TiO2 NFs with anatase and anatase-rutile mixed phase crystallites without 

carbon coating and then calcined the electrospun TiO2 NFs under different atmospheres. The results 

show that argon-calcined TiO2 NFs exhibited several orders of magnitude higher electronic 

conductivity. The anatase TiO2 NF with a fiber-in-tube structure was also reported, with the 

formation mechanism as shown in Scheme 2, which exhibited high structural stability during cycling 

[92]. Ramakrishna et al. [96] studied electrospun TiO2 nanostructures and their composites with 

multiwalled CNTs for rechargeable LIBs. The TiO2/CNT composite showed enhancement in the 

capacity retention (10–800 cycles) by increasing the retention from 81% to 92%. To improve the rate 

capability of TiO2 NFs, the metal oxide/TiO2 was prepared via electrospinning, such as Co3O4/TiO2 

[93], which exhibited high discharge capacity and an excellent rate capability, resulting from the 

synergetic effect between Co3O4 and TiO2, as well as the unique feature of hierarchical 

heterostructures. 

The Nb2O5 was also used as the anode material for LIBs [97]. The polymorphs of Nb2O5, 

including pseudohexagonal (H-Nb2O5), orthorhombic (O-Nb2O5) and monoclinic (M-Nb2O5), were 

synthesized by electrospinning [98]. After annealing, the H-Nb2O5 and O-Nb2O5 phases maintained 

the fibrous morphology, whereas the M-Nb2O5 phase adopted a distorted nugget structure. The M-

Nb2O5 delivered the highest capacity and exhibited the highest capacity retention compared to the 

other two phases. The Li+ diffusion coefficients of H-Nb2O5, O-Nb2O5 and M-Nb2O5 were also studied, 

which were in the ranges of 10−17–10−16, 10−15–10−14 and 10−13–10−12 cm2/s, respectively [99]. The overview 

of some electrospun fibers as anode materials of LIBs and their electrochemical performances is 

presented in Table 2. 

 

Scheme 2. Formation mechanism of the TiO2 nanofiber with a fiber-in-tube nanostructure from the 

tributyltin (TBT)-poly(vinylpyrrolidone) (PVP) composite nanofiber. Reproduced with permission 

from [92]. Copyright Wiley, 2015. 

Table 2. Electrospun anode materials for LIBs and the corresponding electrochemical performance. 

Material Diameter/μm Structure 
DC (after Cycle 

Number)/mAh·g−1 
Rate Reference 

Carbon 0.2–0.3 nanofiber 350 100 mA/g [66] 

Carbon 0.3–0.4 nanofiber 255 (200) 0.2 A/g [67] 
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Table 2. Electrospun anode materials for LIBs and the corresponding electrochemical performance.

Material Diameter/µm Structure DC (after Cycle
Number)/mAh¨ g´1 Rate Reference

Carbon 0.2–0.3 nanofiber 350 100 mA/g [66]
Carbon 0.3–0.4 nanofiber 255 (200) 0.2 A/g [67]
Carbon 0.1–0.2 porous nanofiber 1780 (40) 50 mA/g [68]
Carbon 0.9–1.2 hollow nanofiber 900.6 (1) 100 mA/g [69]
Ag/C ~0.3 hollow nanofiber 600.15 (100) 50 mA/g [70]

GeOx@C 1 core-shell 875 (400) 160 mA/g [71]
Co3O4/CNF 0.8–1.2 core-shell nanowire 795 (50) 100 mA/g [73]

Mn3O4/CNF 0.5–1 hierarchically
mesoporous 760 (50) 100 mA/g [74]

N/GeO2-CNFs 0.075 nanofiber 1031 (200) 100 mA/g [75]
Si/C 2–5 hollow fiber 725 (40) 0.2 A/g [78]
Si/C 0.6–0.8 porous nanofiber 870 (100) 0.1 A/g [79]
Si/C — hollow fiber 1045 (20) 100 mA/g [80]
Si/C 0.186 nanofiber 1215.2 (50) 600 mA/g [81]
Si/C ~2 core-shell 603 (300) 0.5 A/g [82]
Si/C ~0.2 Fiber paper 1267 (100) 500 mA/g [83]
Sn/C 0.1–0.18 core-shell 546.7 (100) 40 mA/g [85]
Sn/C ~0.2 porous nanofiber 774 (200) 0.8 A/g [87]
Sn/C 0.15–0.25 Hollow nanofiber 737 (200) 0.5 C [88]
TiO2 ~0.119 nanofiber 176.7 (100) 0.1 C [91]
TiO2 ~0.5 fiber-in-tube 177 (1000) 200 mA/g [92]

Co3O4/TiO2 ~0.3 hierarchical 602.7 (480) 200 mA/g [93]

Separator Materials

The traditional commercial separators for LIBs are microporous membranes, whose low porosity,
unsatisfactory thermal stability and poor wettability in liquid electrolytes inevitably limit the battery
performance [100]. In this regard, fiber-based membranes and fiber-coated membranes have been
developed [101]. Electrospun poly(vinylidene fluoride) (PVdF)-based membranes as separators for
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LIBs have been reported and show advantages in electrochemical performances [102,103]. Owing to
the softening of PVdF fibers at high temperatures, the electrospun PVdF-based membranes can form
an interconnected web structure by annealing. The interconnected web structure greatly improves
the physical properties and electrochemical performance [102]. Porous PVdF fiber-based membranes
possess good electrochemical properties, such as a high ionic conductivity of 1.0 ˆ 10´3 S/cm and
a wide electrochemical stability window up to 4.5 V vs. Li+/Li at room temperature [103]. Furthermore,
the electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) membranes possessed
high electrolyte uptake and ionic conductivities (10´3 S/cm) [104]. However, PVdF and
PVdF-HFP separators also have their disadvantages, such as the inferior thermal stability and
intrinsically hydrophobic character. Wei et al. [105] prepared cellulose/PVdF-HFP membranes
by coaxial electrospinning with superior thermal stability and a hydrophilic property. Other
electrospun PVdF-based materials, such as P(VdF-HFP)/SiO2 [106,107], PVdF-HFP/PMMA [108],
P(VdF-co-HFP)/PAN [109] and PVdF/SiO2-Poly(acrylic acid) lithium (PAALi) [110] as separators for
LIBs, all delivered high ionic conductivity, good tensile strength and high uptake/leakage. These
results show that the physical properties and electrochemical performance of the membranes can be
improved by adding SiO2, PMMA and PAN [106–110]. Electrospun PAN-based NF membranes are
another common host separator for LIBs due to their high ionic conductivity, electrolyte uptake and
electrochemical stability window [111,112]. Sui et al. [113] prepared PMMA/PAN NF membranes
with a core-shell structure by electrospinning. The LIBs with the PMMA/PAN NF membranes as the
separator exhibited excellent initial discharge capacities, as well as remarkable cycle performance,
resulting from the unique electrospun core-shell structure of PMMA/PAN NF membranes. Electrospun
SiO2/PAN [114,115], PAN/Al2O3-TEGDA-BA [116] (triethylene glycol diacetate-2-propenoic acid
butyl ester (TEGDA-BA)), PAN/TEGDA-BA [117], PAN/PEO [118] (polyethylene oxide (PEO)),
oxy-PAN [119] and LLTO/PAN (lithium lanthanum titanate oxide (LLTO)) [120] NF membranes were
used as separators for LIBs, which showed remarkably good physical properties and electrochemical
performance. The overview of electrospun fiber membranes as separators of LIBs mentioned above is
presented in Table 3.

Table 3. Electrospun separators for LIBs and the corresponding electrochemical performance. PVdF:
poly(vinylidene fluoride); HFP: hexafluoropropylene; TEGDA-BA: triethylene glycol diacetate-2-
propenoic acid butyl ester; PEO: polyethylene oxide; LLTO: lithium lanthanum titanate oxide.

Material Diameter/µm Conductivity/
mS¨ cm´1 (T/˝C)

DC (after-1st)/
mAh¨ g´1 (Rate/C)

Anodic Stability
Voltage/V (vs. Li/Li+) Reference

PVdF 1–1.65 1.0 (25) – 4.5 [103]
PVdF-HFP 1 1.0 (20) 136–142 (0.1) 4.5 [104]
PVdF-HFP 0.512–0.710 6.16 (20) 138–184 (0.2) 5.0 [105]

PVdF-HFP/SiO2 2–5 4.3 (25) 139–170 (0.1) – [106]
PVdF-HEP/SiO2 1–2 8.06 (20) 153–170 (0.1) >4.5 [107]

PVdF-HEP/PMMA 0.200–0.350 2.0 (25) 133.5–145 (0.1) – [108]
PVdF-HEP/PAN 0.320–0.490 1.0 (25) 131–145 (0.1) >4.6 [109]

PVdF/SiO2-PAALi 0.750 3.5 (25) 151–156.5 (0.1) 5.05 [110]
PAN 0.350 2.14 (25) 135–150 (0.1) >4.7 [111]
PAN 0.880–1.260 1.7 (20) 108–113 (0.5) – [112]

PAN-PMMA 0.2–1.0 5.1 (–) 127–135 (0.1) 5.2 [113]
PAN/SiO2 0.8–1.4 2.8–3.6 (–) ´163(0.2) 4.75 [114]
PAN/SiO2 0.100–0.300 11 (–) 127–139 (0.5) 5.0 [115]

PAN/Al2O3-TEGDA-BA 3–5 2.35 (25) 240.4 (0.1) >4.5 [116]
PAN-TEGDA-BA 0.182 5.9 (25) 127–163.6 (0.1) >5.0 [117]

PAN-PEO 0.250–0.330 5.36 (–) 134 (0.1) – [118]
PAN-LLTO 0.250 1.95 (25) 148–162 (0.2) 5.0 [121]
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3.1.2. Li-S and Li-O2 Batteries

Li-S Batteries

Sulfur possesses the characteristics of high natural abundance, low cost and environmental
friendliness. Equally, as a promising electrode material for lithium secondary batteries, sulfur has
attracted attention because of its high theoretical specific capacity (1675 mAh/g) and high theoretical
specific energy (2600 Wh/kg) [122]. Sulfur, working as the cathode of Li-S batteries, has an insulating
property [123]. In recent years, though some progress has been made in LSBs, the dissolution
of intermediates (Li2Sx, 3 ď x ď 8) and the rapid capacity decay limit the future application of
LSBs [124,125]. In order to overcome the above disadvantages, various kinds of carbon materials
were used to composite with sulfur. Electrospinning is an effective method to obtain carbon materials
with a special morphology for the storage of sulfur. The porous carbon NF (PCNF)/S nanocomposites
were fabricated by carbonization of electrospun PAN/PMMA NFs and the subsequent chemical
reaction-deposition strategy [126]. The as-prepared nanocomposites have a high electrical conductivity
and extremely high surface area. The LSBs with the PCNF/S nanocomposites as cathodes showed high
reversible capacity, good discharge capacity retention and an excellent rate capability because the sulfur
was dispersed and immobilized on the porous structures of CNFs, alleviating the polysulfide shuttle
phenomenon. A hierarchical structure carbon/sulfur composite is fabricated based on electrospun
CNF matrices [123]. The CNF matrices were obtained by removing Ni NPs of Ni/CNF, which was
synthesized by electrospinning PAN and Ni(AC)2 H2O. The cell with the carbon/sulfur composite as
the cathode exhibited an initial discharge capacity of 845 mAh/g at 0.25 C, with a retention of 77%
after 100 cycles. Guo et al. [127] prepared the ordered mesoporous carbon fiber/sulfur (OMCF)/S
composite via electrospinning. The OMCF/S composite with a weight ratio of 3:7 delivered a stable
discharge capacity of 690 mAh/g after 300 cycles at 0.3 C. In situ synthesis is the most preferred
preparation method of cathode materials for LSBs, particularly in synthesizing precursor mixture
materials by electrospinning [128]. PAN NFs were fabricated in situ firstly with a porous structure by
electrospinning, and then, the final product, PCNFs, was obtained by the following carbonization [129].
The prepared PCNFs were both mesoporous and microporous with large surface areas, which can store
much sulfur and were utilized as conductive matrices for sulfur to form PCNFs/S nanocomposites.
The LSB with the PCNFs/S nanocomposites as the cathode showed an initial discharge capacity of
1155 mAh/g at 0.02 C.

Lithium-O2 Batteries

Recently, a rechargeable Li-O2 battery has attracted significantly attention due to its high
theoretical energy density (11,680 Wh/kg) [130]. The Li-O2 battery involves a distinct operating
mechanism (typically, 2Li+ + O2 + 2e´ Ø Li2O2, E0 = 2.96 V vs. Li/Li+) on the O2 electrode, which
relates to the Li2O2 formation during the discharging process (oxygen reduction reaction = ORR) and
the Li2O2 decomposition during the charging process (oxygen evolution reaction = OER) [131,132].
To date, the O2 electrode is porous, which can provide the solid-liquid-gas tri-phase and electron
migration regions for the ORR and OER. Therefore, the performances of the Li-O2 battery depend on
the material and architecture of the O2 electrode [133]. Electrospinning is an attractive method for
fabricating the materials of the O2 electrode for Li-O2 batteries [134].

In recent years, numerous electrospun electrocatalyst have been explored to enhance the
performance of Li-O2 batteries. For example, Kim et al. [135] prepared the 1D Co3O4 NFs (obtained
by electrospinning and calcination of PVP and Co precursor) immobilized on both sides of 2D
non-oxidized graphene nanoflakes as a bifunctional composite catalyst for an O2 electrode in Li-O2

batteries. It showed the first discharge capacity of 10,500 mAh/g and a stable cyclability of 80 cycles
with a limited capacity of 1000 mAh/g. 1D porous La0.5Sr0.5CoO2.91 NTs were synthesized via
electrospinning and sintering PVP and La(NO3)3¨ 6H2O, Sr(NO3)2 and Co(CH3COO)2¨ 4H2O [134].
The resulting La0.5Sr0.5CoO2.91 NTs as O2 electrode catalyst exhibited a high initial discharge capacity
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of 7205 mAh/g at a current density of 100 mA/g and a stable cyclability of 85 cycles with a
limited discharge depth of 1000 mAh/g. A hierarchical mesoporous/macroporous La0.5Sr0.5CoO3 ´ x
NTs (HPN-LSC) was also prepared by electrospinning PVP and La(NO3)¨ 6H2O, Sr(NO3)2 and
Co(NO3)2¨ 6H2O [136]. The Li-O2 battery with HPN-LSC as the O2 electrode catalyst enhanced
the reversibility and round-trip efficiency.

The O2 electrode architecture also influences the performance of Li-O2 batteries. To avoid the
negative influence of the binder on the long-term stability, a novel “binder-free” design has been
proposed [137]. Typically, electrospun PAN and Co(NO3)2¨ 6H2O can yield the Co3O4/CNF composites,
that as the O2 electrode exhibited a high initial discharge capacity of 760 mAh/g [137]. In another
study, a Co3O4-based binder-free O2 electrode was reported for Li-O2 batteries [138]. Scheme 3
illustrates a typical procedure for the fabrication of the Co3O4-based binder-free O2 electrode. The
Co3O4 nanoparticles formed nanoflakes by the aggregation in O2 electrode, which can provide a large
amount of catalytic active sites for ORR/OER. The Co3O4 spheres embedded in the TiO2 fiber mesh
may function as anchors to prevent the detachment of the Co3O4 layer from the current collector,
resulting in excellent structural and cycling stability.
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3.2. Fuel Cells

Fuel cells are energy conversion devices that can convert chemical energy into electrical energy
through electrochemical oxidation of fuel (hydrogen or hydrogen-rich fuel). Fuel cells include proton
exchange membrane fuel cells (PEMFCs) [139], direct methanol fuel cells (DMFCs) [140], alkaline fuel
cells (AFCs) [141], phosphoric acid fuel cells (PAFCs) [142], solid oxide fuel cells (SOFCs) [143] and
molten carbonate fuel cells (MCFCs) [144].

3.2.1. Electrode Materials

The catalyst is the key material in fuel cells. It has been proven that the employment of a catalyst
can largely influence the fuel cell performance [145]. Currently, electrospun NF materials have been
used as catalyst and catalyst supporting materials for fuel cells because of their high poisoning
resistance, high activity and good durability [146]. The PVP/Pt composite fibers were synthesized via
electrospinning. After calcining, the Pt NWs with a high surface area were obtained, which displayed
large electrochemically-active surface areas (ESA) of 6.2 m2/g and a high specific activity toward a
methanol oxidation reaction (MOR) of 1.41 mA/cm2 in DMFCs [140]. Pt/Rh NWs [145] and Pt/Ru
NWs [147] were further synthesized, which exhibited higher catalytic activities in fuel cells than that of
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the traditional NP catalyst. It has been also reported that the bimetallic NWs electrocatalysts showed
better stability than the bimetallic NPs [147]. Nanoporous Pt/Fe alloy NWs [148] and Pt/Co alloy
NWs [149] were synthesized and studied. The Pt/Fe alloy NWs’ overall wire diameters are about
10–20 nm, which showed a high specific activity (2.3-times that of conventional Pt/C catalyst) [148].
Pt/Co alloy NWs’ average diameters are 28 nm, which showed excellent stability activity to the ORR
in acidic electrolytes [149].

It has been proven that the catalytic activity of the catalyst depends not only on the shape, size
and distribution of the catalyst materials, but also on the categories and properties of the catalyst
support [150]. The catalyst particles are dispersed on various supports, including CNFs, SnO2 and
TiO2. Among them, CNFs are the most widely used catalyst supports. For example, Pt/CNF mats
were prepared by electrospinning [146]. The catalytic peak current on the optimum Pt/CNF mat
electrode reaches 420 mA/mg (the catalytic peak current of methanol oxidation on a commercial
catalyst of 185 mA/mg). The results suggest that the electrospun CNF mats are favorable to enhance
the performance of the catalyst. However, the cost and scarcity of Pt limit its application in fuel cells.
Therefore, the low-cost N-doped CNFs were synthesized to replace Pt/CNFs [151–153]. Yu et al. [151]
investigated the effect of different nitrogen sources (including melamine, aniline, urea and polyaniline)
and nitrogen content on the activity of electrocatalyst, indicating that the best electrocatalytic activity
was obtained with an aniline/PAN with a mass ratio of 20:3. You et al. [152] and Huang et al. [153] used
NH3 as the nitrogen source to prepare the N-doped CNFs by carbonizing electrospun polyacrylonitrile
(PAN) NFs in NH3. Metal-/alloy-doped CNFs were also used as catalysts for fuel cells, such as
Ag [154], Co/N [155,156], Cu/Co [150], Fe/Co [157,158], Ni/Cu alloy [159], Fe/N [160,161] and
Ni/Co [162] -doped CNFs. For example, Smirnova et al. [154] fabricated Ag/CNFs with different Ag
loading amounts of 11, 15 and 25 wt %. The well-dispersed Ag NPs were attached to the surface of the
electrospun CNFs. The results show that the mass activity of the 15 wt % Ag/CNFs system was the
highest (119 mA/mg).

The transition metal oxides possess high chemical stability, good corrosion resistance and strong
metal support interaction, like SnO2 and TiO2, which can enhance the activity of the catalysts. As
catalyst supports, they are able to stabilize and disperse adequately a number of active phases [163].
Electrospun Pt/SnO2 NFs were used as the anode electrocatalyst material for PEMFCs [164], which
exhibited a high electrochemically-active surface area (81.17 m2/g-Pt). A diffusion-limited current
was achieved at 0.07 V. Cavaliere et al. [165] prepared the Pt supported on the electrospun Nb-SnO2

with a loose-tube (fiber-in-tube) morphology (Figure 6), which exhibited a higher electrochemical
stability than conventional Pt/C electrodes. Cavaliere et al. [166] also synthesized Pt supported on
electrospun Nb-SnO2 with a loose-tube structure as the cathode material for fuel cells, who studied
in situ fuel cell operation under accelerated stress tests and confirmed that the voltage loss was
negligible degradation. Electrospun Pt/TiO2 NFs were also synthesized by electrospinning and the
reductive impregnation method, which were used as electrocatalysts and exhibited high activities for
methanol oxidation [167]. Electrospun Nb-TiO2 NFs were investigated as electrocatalyst supports for
PEMFCs [168]. The Pt/Nb-TiO2 NFs showed a high stability after accelerated stress tests, retaining
73% of the electroactive Pt area (the value of Pt/CNFs was 8%).

The membrane electrode assembly (MEA) is one of the important parts for fuel cells, which
consists of the membrane and electrocatalyst [169]. Electrospinning is a straightforward method
to prepare NFs of MEA for fuel cells. Electrospun nafion/polyphenylsulfone (PPSU) mats were
synthesized for the H2/Br2 fuel cell [169], which exhibited good selectivity and high ionic conductivity.
Shul et al. [170] fabricated electrospun SiC webs as membranes. The functionalized SiC webs (by
introducing the hydroxyl group and phosphoric acid) showed a 70% better ion-exchange capability
than that of the conventional membrane. The Pt NWs deposited on electrospun carbon film with a
hierarchical structure were also used as MEA for fuel cells [171], which can induce the catalytic reaction
toward formic acid electrooxidation.
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3.2.2. Electrolyte Membrane

The proton exchange membrane (PEM) is an electrolyte that behaves as an important indicator of
the performance of fuel cells [172]. Nafion has been regarded as the most commonly-used polymer
electrolyte membrane, which showed excellent chemical and physical stabilities and high proton
conductivity [173]. However, the pure nafion is not a good candidate for electrospinning due to its low
viscosity [174]. Aiming at the enhancement of the mechanical strength of the composite membrane,
matrix polymers, such as PEO/Nafion [175] and PVA/Nafion [174], have been studied. To improve the
proton conductivity, Na et al. [176] fabricated the sulfonated poly(ether ether ketone ketone) (SPEEKK)
membrane with a spherical structure by electrospinning. The sulfonated SPEEKK membrane exhibited
a high proton conductivity (0.37 S/cm), which is 37-times higher than that of the common SPEEKK
membrane. The Nafion and PVdF composite membranes were fabricated by electrospinning [177].
They studied the Nafion NFs embedded in a PVdF matrix (N(fibers)/PVdF) and PVdF NFs embedded
in a Nafion matrix (N/PVdF(fibers)). Both membrane structures exhibited similar in-plane conductivity,
where the conductivity scaled linearly with the Nafion volume fraction. Hybrid organic-inorganic
membranes were also prepared by electrospinning, which exhibited good thermal stability and a high
proton conductivity of 15 ms/cm at 120 ˝C [178]. Shanmugam et al. [179] fabricated TiO2, CeO2 and
ZrO1.95 NTs with mesoporous structures as fillers in the composite membranes, which were then
incorporated in a Nafion ionomer to increase the water retention capability in the Nafion membrane.

3.3. Dye-Sensitized Solar Cells

Dye-sensitized solar cells (DSSCs) as the third generation of solar cells have attracted much
attention due to their high energy efficiency, clean energy source and low cost, which can be applied to
many portable and mobile ubiquitous power sources [180]. DSSCs consists of a photoanode, counter
electrodes, dye and electrolyte [181]. NFs have been considered to be the most important material for
DSSC photoanodes, counter electrodes and electrolytes.

3.3.1. Photoanode

In the DSSCs, the photoanode is a transparent conducting oxide coated with a film of a high band
gap metal oxide (TiO2, ZnO, SnO2 and Nb2O5) [182,183]. Electrospun metal oxide NFs as the film
coated with photoanode have been studied due to their high specific area [184–186]. Leung et al. [187]
fabricated an innovative bilayer TiO2 NF photoanode by electrospinning. The bilayer TiO2 NF
photoanode can offer excellent dye-loading, light harvesting and electron-transport properties, which
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improved the power conversion efficiency. Figure 7 shows the schematic diagram of the fabrication
procedure for the bilayer TiO2 NF photoanode. In general, the photoanode with high specific surface
area can improve light-scattering effects and facilitate electrolyte diffusion [188]. In this regards,
Jang et al. [189] synthesized the multiscale porous TiO2 NFs via electrospinning, which were used
as photoanodes of DSSCs. In another study, CNT/TiO2 NF [190] was fabricated by electrospinning.
When 5 wt % of hollow CNTs was added into TiO2 NFs, the energy conversion efficiency of DSSCs
reached 3.39%. Ko et al. [191] prepared a novel nanostructured PVdF NFs/TiO2 NP composite by
electrospinning. The composite showed an outstanding bending stability because the PVdF NFs
can reinforce the photoelectrode. Electrospun hollow TiO2 NFs were also obtained to enhance the
conversion efficiency of ZnO-based DSSCs [192]. The results show that the weight of TiO2 influences
the performance of the TiO2/ZnO composite photoanode. The maximal energy conversion efficiency
reached 4.59% by adding 10 wt % of hollow TiO2 NFs, which is 62% higher than that of pure ZnO
NPs-based DSSCs.
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3.3.2. Counter Electrodes

In the DSSCs, the counter electrode is a transparent conducting oxide coated with a thin layer of
Pt, which plays an important role on transferring the electron to the external circuit and regenerating
the I3´ into I´ by reduction in the electrolyte system [193]. However, Pt is an expensive metal, and the
corrosive I´/I3´ redox couple can reduce its catalytic activity [194]. To address these issues, many
studies have been carried out on the alternatives to replace the Pt. For example, Qiao et al. [195]
fabricated CNFs by electrospinning using an electrocatalyst and low-cost alternative to Pt for I3

´

reduction in DSSCs. The short circuit current density and open circuit voltage of CNF-based cells
were comparable to Pt-based cells, while the conversion efficiency was slightly lower than that of
Pt-based cells. The hollow activated CNFs with a mesoporous structure were reported, which can
promote the electron and ion transfer, decrease the resistance of charge transfer and increase the
contact area between the liquid electrolyte and the electrode [196,197]. The resulting overall conversion
efficiency of hollow activated CNF-based cells is comparable to that of Pt-based cells. To enhance the
electrocatalytic activity, some of the teams prepared transition metals/CNFs [198–202] and transition
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metal carbides/CNFs [203,204]. The overview of electrospun NFs as a counter electrode material of
DSSCs is summarized in Table 4.

Table 4. Photovoltaic performance parameters of dye-sensitized solar cells (DSSCs) with electrospun
fibers. FF: fill factor = Vmax ˆ Jmax/Voc ˆ Jsc.

Material Diameter/nm Voc/V Jsc/mA¨ cm´2 FF (%) η (%) Reference

CNF+Pt NPs 250 0.83 12.66–13.33 65.6–68.8 7–8 [193]
CNF 250 0.76 12.6 57 5.5 [195]

H-ACNF 190/270 0.73 14.5 62 6.58 [196]
Meso-HACNF 200/360 0.73/0.74 15.4/15.3 64/61 7.21/6.91 [197]

CNF+Co Cr NPs – 0.685 8.784 54 3.27 [198]
CNF+Co Ni NPs – 0.74 11.12 54 4.47 [199]
CNF+Co Pd NPs 150 9.8 0.705 36 2.5 [200]
CNF+Cu Ni NPs – 0.70 7.67 65 3.5 [201]
CNF+Fe Ni NPs 230 0.72 10.1 65 4.7 [202]

CNF/TiC 280–300 0.73/0.72/0.72 9.29/9.71/9.56 62/64/63 4.2/4.5/4.3 [204]

3.3.3. Electrolytes of DSSCs

The electrolyte is an indispensable component in the DSSCs, which plays an important role in
reduction of the oxidized dye by a suitable redox couple and the assistance of the charge transfer
from the counter electrode to the photoanode [205]. In the DSSCs, the traditional organic liquid
electrolytes and ionic liquid electrolytes exhibit a poor long-term stability because of their being prone
to leakage and volatility [206]. Therefore, polymer electrolytes have been developed due to their
high ionic conductivity, high thermal stability and good permeability [207]. Kim et al. [208] prepared
the PVdF-HFP via the electrospinning method, which showed high electrolyte uptake and ionic
conductivity of 653 ˘ 50% and 4.53 ˘ 1.3 ˆ 10´3 S/cm, respectively. Electrospun PVdF-HEP NFs with
different diameters were further discussed [206]. The PVDF-HFP NFs prepared from a 15 wt % spinning
solution showed high ionic conductivity (1.295 S/cm) and electrolyte uptake (947%). Dyson et al. [209]
soaked electrospun PVdF-HFP membrane (es-PM) in the ionic liquid electrolyte containing 0.5 M
1-butyl-3-methylimidazolium iodide (BMImI), 0.5 M LiI, 0.05 M I2 and 0.5 M 4-tert-butylpyribine
to obtain the electrospun PVdF-HFP membrane electrolyte (esPME). The 0.5 M BMImI-esPME
exhibited better performance than 0.5 M BMImI containing liquid electrolyte (LE), as shown in
Figure 8. The poly(vinylidenefluoride-cohexafluoropropylene)/polystyrene (PVdF-HFP/PS) [210] and
PVdF-HFP/cobalt sulfide (CoS) [211] were also prepared by the electrospinning method, which showed
the good photovoltaic performance in DSSCs. SiO2 NF/PEO-(PVdF-HFP) was also synthesized via
electrospinning, which possesses high ionic conductivity of 9.9 ˆ 10´4 S/cm [212]. In addition, SiO2

NF/PEO-(PVdF-HFP) as the polymer electrolyte can enhance the stability of the interface between
the electrolyte and the semiconductor electrodes. The photovoltaic performances of electrospun NFs
electrolytes are summarized in Table 5.

Table 5. Photovoltaic performance of the DSSCs based on electrospun fibers.

Material Voc/V Jsc/mA¨ cm´2 FF (%) η (%) Reference

PVdF-HFP 0.75 12.3 57 5.21 [208]
PVdF-HFP 0.78/0.76/0.77 5.759/6.028/5.378 66.18/68.05/66.27 2.98//3.13/2.75 [206]

BMImI-esPME 0.71 13.10 69 6.42 [209]
PVdF-HFP/PS 0.76 11.8 66 5.75 [210]

PVdF-HFP/CoS 0.73 14.42 70 7.34 [211]
PEO-PVdF-HFP-SiO2 0.58/0.60/0.59 13.37/13.63/13.18 60.24/59.54/59.67 4.68/4.85/4.66 [212]

PVdF-PAN-Fe2O3 0.77 10.4 62 4.9 [213]
PVdF-PAN-V2O5 0.78 13.8 72 7.75 [214]
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Figure 8. Photocurrent density-voltage (J-V) curves for the DSSC containing (a) 0.5 M 1-butyl-3-
methylimidazolium iodide (BMImI)-LE and (b) 0.5 M BMImI-esPME. Reproduced with permission
from [209]. Copyright Wiley, 2015.

3.4. Supercapacitors

As a promising novel energy storage device, electrochemical capacitors (supercapacitors) have
been used in various fields because of their high power density, fast charging and discharging times and
long cycle life [215]. According to different energy storage mechanisms, supercapacitors are classified
into pseudocapacitors and electric double-layer capacitors (EDLCs) [216]. The pseudocapacitors
involve a faradic charge storage process that was facilitated by a redox reaction at the interface between
electrode and electrolyte [217]. The EDLCs store electrical energy via the accumulation of electric
charges at the electrical double layer formed at the electrode-electrolyte interface [218].

In the EDLCs, the capacitance depends on the surface area accessible to the electrolyte, and
porous carbon has been investigated because of its high surface area [219]. Electrospinning techniques
are one of the most facile methods to fabricate high PCNFs [27,220–223]. Yan et al. [224] prepared
a light-weight CNF/graphene nanosheet (CNF/GNS) composite paper by electrospinning. The
CNF/GNS composite paper showed a high specific capacitance of 197 F/g, about 24% higher than that
of pure CNF paper. CNT/CNFs [225] and graphene-beaded CNFs (G/CNFs) [226] were synthesized
via electrospinning techniques. The performance of pure CNFs is significantly improved after adding
CNT and graphene. Song et al. [227] fabricated nitrogen-enriched PCNF by electrospinning. The
nitrogen-enriched PCNF possessed a high specific surface area, good thermal stability and high
electrical conductivity, which exhibited the maximum specific capacitance of 251.2 F/g. The transition
metal oxide encapsulated on electrospun CNFs, including Fe3O4/CNFs [228], Co3O4/CNFs [229],
Fe/CeO2/CNFs [230], MnO2/CNFs [231,232], MnOx/CNFs [233], NiO/RuO2/CNFs [234],
RuO2/ACNFs [235], ZnO/ACNFs [236] and V2O5/CNFs [237], was synthesized via electrospinning,
and all exhibited good electrochemical performance.

Besides, transition metal oxides are also promising pseudocapacitors electrode materials, due
to their high electrical conductivity, several possible oxidation states and electrochemical stability.
Kim et al. [238] fabricated electrospun RuO2 NF mats to support the RuO2 NPs. RuO2 NF mats with
RuO2 NPs displayed high specific capacitance of 886.9 F/g at a scan rate of 10 mV/s and a low capacity
loss of only 30% from 10 to 2000 mV/s. Electrospun V2O5 NFs [134] and Mn3O4 NFs [239] were also
demonstrated to be promising electrode materials for pseudocapacitors. Wang et al. [240] fabricated
the NiO NFs modified by citric acid (NiO/CA) with a hollow tube via electrospinning techniques.
The pseudocapacitors with NiO/CA as electrodes displayed superior capacitive performance with
large capacitance (336 F/g) and excellent cyclic performance (the capacitance decreases only by
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13% of the initial capacitance after 1000 cycles). α-Fe2O3 with porous fiber and α-Fe2O3 with
nanograin structures were prepared by the electrospinning technique [241], which were used as
electrode materials in supercapacitors. The supercapacitors with both showed high capacitance
retentions even after 3000 cycles. Electrospun 1D porous bimetallic ZnCo2O4 NTs showed a much
higher specific capacitance of 770 F/g at 10 A/g and good cycling stability of only a 10.5% loss
after 3000 cycles [242]. Lin et al. [243–245] reported LaxSr1 ´ xCu0.1Mn0.9O3 ´ δ (0.1 ď x ď 1) NFs,
LaxSr1 ´ xCoO3 ´ δ (0.3 ď x ď 1) NFs and LaxSr1 ´ xNiO3 ´ δ (0.3 ď x ď 1) NFs, which exhibited
excellent electrochemical performance. The supercapacitors with LaxSr1 ´ xCoO3 ´ δ (0.3 ď x ď 1) NFs
as the electrode exhibit the highest specific capacity of 747.75 F/g at a current density of 2 A/g.

4. Conclusions

In this review, we summarized some progress in electrospun NFs for energy applications, such
as lithium-based batteries (LIBs, LSBs and Li-O2 batteries), fuel cells, dye-sensitized solar cells and
supercapacitors. As the materials for electrodes and separators in lithium-based batteries, electrospun
NFs exhibited high power capabilities and good kinetic properties because of the decreasing length of
Li+ diffusion pathways, which is mainly attributed to their high specific surface areas and high
porosities. In fuel cells, electrospun NFs were used as the electrode materials and electrolyte
membranes. Being electrocatalysts for electrode materials, electrospun NFs showed high activities and
good durabilities. As electrolyte membranes, electrospun NFs exhibited high electrolyte uptakes
and ionic conductivities. Equally, in terms of the application in dye-sensitized solar cells, the
photoelectrodes prepared by electrospun NFs demonstrated high photoelectric conversion efficiencies
due to their unique fiber morphologies. Supercapacitors with NFs exhibited high specific capacities and
good electrochemical performances, which result from the high specific surface areas, good thermal
stabilities and high electrical conductivities of NFs. As a promising synthesis technology for NFs with
various morphologies, electrospinning has been largely explored. Nonetheless, the improvement of
the accuracy of the experimental parameters and the development of NFs with multiple structures are
currently being undertaken.
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