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Abstract: TiO2 (anatase phase) has excellent photocatalytic performance and different methods
have been reported to overcome its main limitation of high band gap energy. In this work,
TiO2-magnetically-separable nanocomposites (MAGSNC) photocatalysts with different TiO2 loading
were synthesized using a simple one-pot mechanochemical method. Photocatalysts were
characterized by a number of techniques and their photocatalytic activity was tested in the
selective oxidation of benzyl alcohol to benzaldehyde. Extension of light absorption into the visible
region was achieved upon titania incorporation. Results indicated that the photocatalytic activity
increased with TiO2 loading on the catalysts, with moderate conversion (20%) at high benzaldehyde
selectivity (84%) achieved for 5% TiO2-MAGSNC. These findings pointed out a potential strategy
for the valorization of lignocellulosic-based biomass under visible light irradiation using designer
photocatalytic nanomaterials.

Keywords: TiO2; magnetically separable photocatalysts; selective photo-oxidation; mechanochemical
synthesis; ball mill

1. Introduction

Photocatalysis has been considered as one of the most environmentally friendly and promising
technologies owing to advantages such as being clean, efficient, cost-effective, and energy-saving [1–3]
Typical applications of photocatalysis are conversion of CO2 to fuels and chemicals [4–8], self-cleaning
surfaces [9,10], disinfection of water [11,12], oxidation of organic compounds [13–15], and production
of hydrogen from water splitting [16–19]. In this regard, different types of heterogeneous photocatalysts
have been extensively reported, including metal oxide nanoparticles, composite nanomaterials,
metal-organic frameworks, plasmonic photocatalysts, and polymeric graphitic carbon nitride [3,4].

Among these different types of photocatalysts, TiO2 has been extensively investigated and is
one of the most widely used in the aforementioned applications due to its excellent photocatalytic
activity, high thermal and chemical stability, low cost, and non-toxicity [20,21]. However, in spite of
its advantages, the main drawback of TiO2 in photocatalysis relates to the large band gap (3.2 eV) for
its anatase crystalline phase which restricts its utilization to ultraviolet (UV) irradiation (λ < 387 nm),
with UV irradiation comprising less than 5% of the solar energy. Therefore, it is very important to
extend the photocatalytic activity of TiO2 nanocatalysts under visible light to profit from abundant
solar energy. Various approaches have been developed to improve the photoactivity of TiO2 by
lowering the band-gap energy and delaying the recombination of the excited electron-hole pairs, i.e.,
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cationic [22,23] and anionic [20,24,25] doping, dye photosensitization, deposition of noble metals.
Photocatalysts doped with noble metals can improve their photoactivities, but with limitations for
large scale applications. Importantly, the design of photocatalysts featuring magnetic separation has
not been considered to a large extent despite the obvious advantages of separation and recycling for
magnetically-separable heterogeneous photocatalysts [26]. Conventional methods for heterogeneous
catalyst recovery, such as filtration, centrifugation, etc., are either time consuming or costly, while the
enhanced magnetically-separable properties of the heterogeneous catalyst can exceed these limitations.
In recent years, photocatalysts with TiO2 coated on magnetic particles have been reported by many
researchers [27–29], which showed enhanced photocatalytic activities and feasible separation by
applying external magnetic field. Ojeda et al. reported a maghemite/silica nanocomposites, which were
also magnetically separable [30], followed by a report on the incorporation of TiO2 on maghemite/silica
nanocomposites under ultrasounds which exhibited excellent photocatalytic performance in the
selective oxidation of benzyl alcohol [31].

The selective oxidation of alcohols to the corresponding carbonyl compounds accounts for one
of the most significant transformations in organic chemistry. Particularly, the conversion of benzyl
alcohol (BA) to benzaldehyde (BHA) has attracted extensive attention, since benzaldehyde is widely
applied in food, pharmaceutical, and perfumery industries and as building block in other chemical
industries. Recently, the photocatalytic oxidation of benzyl alcohol to benzaldehyde has been reported
using different catalysts and chlorine-free benzaldehyde with high selectivity, with respect to the
traditional syntheses-either by benzyl chloride hydrolysis or via toluene oxidation [15,26,32].

In continuation with research efforts from the group related to the design of advanced
nanomaterials for (photo)catalytic processes, we aimed to synthesize an advanced magnetically-separable
nanophotocatalyst (TiO2-MAGSNC) using a simple one-pot mechanochemical method under ball mill.
A widely-reported porous support (SBA-15) was utilized as support, together with an iron precursor
and propionic acid to obtain a magnetic phase able to provide magnetically-separable features to
the catalyst. A high-energy ball milling process was applied in this work which could provide
small nanoparticle sizes as well as a highly homogeneous crystalline structure and morphology.
TiO2-MAGSNC catalysts were found to be photoactive with a high selectivity in the selective oxidation
of benzyl alcohol to benzaldehyde.

2. Experimental

2.1. Synthesis of TiO2/MAGSNC Photocatalysts

SBA-15 silica was prepared using the procedure reported by Bonardet et al. [33] Different amounts
of titanium precursor were used to obtain various contents of TiO2 (0.5, 1.0, 2.0, 5.0 wt %) on the
catalysts. Titanium incorporation was subsequently achieved by a simple mechanochemical method
in a planetary ball mill under previous optimized conditions [34]. In detail, Pluronic P123 surfactant
(Sigma-Aldrich Inc., St. Louis, MO, USA) (8.0 g) was dissolved in deionized water (260 mL) and HCl
(Panreac Química S.L.U., Barcelona, Catalonia, Spain) (12 M, 40 mL) under vigorous stirring, at 40 ˝C
for 2 h. Upon complete dissolution, 7 g of tetraethyl orthosilicate (TEOS) (Sigma-Aldrich Inc., St. Louis,
MO, USA) were added dropwise to the above solution. The mixture was stirred at 40 ˝C for 24 h,
followed by hydrothermal treatment at 100 ˝C for 48 h in an oven. The white solid was separated from
the solution by filtration and dried at 60 ˝C. The template was removed by calcination at 600 ˝C for
8 h. Different amounts (13, 59, 188 and 661 µL) of titanium isopropoxide (Sigma-Aldrich Inc., St. Louis,
MO, USA), 1.34 g Fe(NO3)3¨ 9H2O (Merck, Darmstadt, Hesse, Germany), 0.5 g SBA-15 and 0.25 mL
propionic acid (Panreac Química S.L.U., Barcelona, Catalonia, Spain) were added to a 125 mL reaction
chamber with eighteen 10 mm stainless steel balls and then ground in a Retsch PM-100 planetary ball
mill (350 rpm, 10 min) (Retsch GmbH, Haan, North Rhine-Westphalia, Germany). Materials calcination
was performed at 400 ˝C (heating rate 3 ˝C/min) for 5 h in a furnace under an oxygen deficient
atmosphere (static air). MAGSNC sample was synthesized under same conditions without adding
titanium isopropoxide. All chemicals were used as received.
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2.2. Characterization of the TiO2-MAGSNC Photocatalysts

The crystal phase structures of TiO2-MAGSNC samples were examined by powder X-ray
diffraction (XRD) measurements performed in a Bruker D8 DISCOVER A25 diffractometer (Bruker
Corporation, Billerica, MA, USA) equipped with a vertical goniometer under theta-theta geometry
using Ni filtered Cu Kα (λ = 1.5418 Å) radiation and operated at 40 KeV and 40 mA. Wide angle
scanning patterns were collected from 10˝ to 80˝ with a step size of 0.01˝ and counting time of 500 s
per step.

Textural properties of the samples were determined by N2 physisorption using a Micromeritics
ASAP 2020 automated system (Micromeritics Instrument Corporation, Norcross, GA, USA) with the
Brunauer-Emmet-Teller (BET) and the Barret-Joyner-Halenda (BJH) methods. Prior to adsorption
measurements, samples were degassed under vacuum (0.1 Pa) for 4 h at 300 ˝C.

A UV/VIS/NIR spectrophotometer Jasco V-570 (JASCO international Co., Ltd., Hachioji, Tokyo,
Japan) equipped with an integrating sphere was used to record Ultraviolet-Visible (UV-VIS) diffuse
reflectance spectra. The baseline was obtained with SpectralonTM (poly(tetrafluoroethylene) as
a reference material. The Kubelka-Munk method was utilized (from diffuse reflectance spectra) to
determine the band gap function. Function f (R) was calculated from the following equation:

f pRq “
p1´ Rq2

2R
(1)

while Eg was calculated from (f (R)hν)1/2 versus hν plots.
X-ray photoelectron spectroscopy (XPS) measurements were carried out with a VG Scientific

photoelectron spectrometer ESCALAB-210 (Thermo Scientific, Waltham, MA, USA) with Al Kα

radiation (1486.6 eV) from an X-ray source, operating at 15 kV and 20 mA. Survey spectra in the
energy range from 0 to 1350 eV with 0.4 eV step were recorded for all the samples. High resolution
spectra were recorded with 0.1 eV step, 100 ms dwell time and 25 eV pass energy. A ninety degree
take-off angle was employed in all measurements. Curve fitting was carried out using the CasaXPS
software (Casa Software Ltd., Cheshire, England, UK), which each component of the complex envelope
is described as a Gaussian–Lorentzian sum function; a constant 0.3 (˘0.05) G/L ratio was used.
The background was fitted using a nonlinear Shirley model. Measured transmission function and
Scofield sensitivity factors have been employed for quantification purposes. An aromatic carbon C 1s
peak at 284.5 eV was used as the reference of binding energy.

Scanning electron microscopy images were recorded with a JEOL JSM-6300 scanning microscope
(JEOL Ltd., Akishima, Tokyo, Japan) equipped with Energy-dispersive X-ray spectroscopy (EDX) at
20 kV. An Au/Pd coating was employed to analyze samples on a high-resolution sputtering SC7640
instrument (Quorum Technologies Ltd., Lewes, England, UK) (up to 7 nm thickness) at a sputtering
rate of 1.5 kV per minute.

FEI Tecnai G2 (FEI Tecnai, Hillsboro, OR, USA) fitted with a Charge-coupled Device (CCD)
camera for ease and speed of use was applied to record the transmission electron microscopy (TEM)
images of the synthesized TiO2-MAGSNC samples at the Research Support Service Center (SCAI) from
Universidad de Cordoba. The resolution of the equipment is around 0.4 nm. Prior to the recording,
samples were prepared by suspension in ethanol, assisted by sonication and followed by deposition
on a copper grid.

The magnetic susceptibility was measured at low frequency (470 Hz) using a Bartington MS-2
(Bartington Instruments Ltd., Witney, England, UK), at room temperature.

2.3. Photocatalytic Experiments

A Pyrex cylindrical double-wall immersion well reactor equipped with medium pressure 125 W
mercury lamp (λ = 365 nm), which was supplied by Photochemical Reactors Ltd. UK (Model RQ
3010), (Reading, UK) was used in all the catalytic reactions (Figure 1). The distance between the
light source and reaction media was ca. (ca.: abbreviation of circa) 10 nm and irradiance of the
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light source reached 1845.6 W/m2. Magnetic stirring with a speed of 1100 rpm was utilized in the
batch reactor to obtain a homogenous suspension of the TiO2-MAGSNC photocatalysts. The reaction
temperature was established at 30 ˝C. 1.5 mM benzyl alcohol (Sigma-Aldrich Inc., St. Louis, MO, USA)
was prepared in acetonitrile (Sigma-Aldrich Inc., St. Louis, MO, USA) medium. Experiments were
performed from 150 mL of the mother solution and 1 g/L of catalyst concentration for 4 h under UV
light and air bubbling conditions (25 mL/min). In order to equilibrate the adsorption-desorption over
the photocatalyst surface, the reaction solution was left in the dark for 30 min before each reaction.
Samples were periodically withdrawn (ca. 1 mL) from the photoreactor at different times and filtered
off (0.20 µm, 25 mm, nylon filters). The concentration of model compound was determined by a high
performance liquid chromatography (HPLC, Waters Model 590 pump) (Waters Limited, Hertfordshire,
UK) equipped with a dual absorbance detector (Waters 2487) and the SunFire™ C18 (3.5 µm,
150 mm length, 4.6 mm inner diameter) column provided by Waters. The mobile phase was Milli-Q
water/acetonitrile/methanol in the volumetric ratio of 77.5:20:2.5 with 0.1% of H3PO4 (Sigma-Aldrich
Inc., St. Louis, MO, USA). We used isocratic elution at a flow rate of 1 mL/min. The injection volume
was 10 µL. TiO2 P25 (approx. 80% anatase and 20% rutile) is a commercial catalyst purchased from
Evonik Industries (Evonik Industries AG, Essen, Germany) and used as comparison here.
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Figure 1. Reaction system: (1) lamp cooling system; (2) double-walled immersion well reactor;
(3) photoreactor; (4) port for taking samples; (5) 125 W ultraviolet (UV) lamp; (6) mother solution; and
(7) magnetic stirrer.

3. Results and Discussion

XRD analysis was performed to investigate the crystal phase of the synthesized TiO2-MAGSNC
nanocomposites. The XRD pattern of a representative sample (5% TiO2-MAGSNC) is shown in
Figure 2 The mean observed peaks (2θ = 35.6˝) could be assigned to the presence of a magnetic
phase (in principle γ-Fe2O3, although the presence of a magnetite phase cannot be completely ruled
out) while titania peaks were not obvious due to the low titanium loading on the supports; hence,
particle size could not be worked out from these data. By applying the Scherrer equation, iron oxide
nanoparticle sizes can be calculated to be ca. 14 nm. Results from XRD pattern also suggested that our
simple mechanochemical protocol can successfully lead to the formation of magnetically-separable
nanocomposites, as further supported with subsequent characterization techniques.

N2 absorption-desorption isotherms were used to evaluate the textural properties of the
TiO2-MAGSNC samples with different content of TiO2. The isotherms (Figure 3) matched the characteristic



Nanomaterials 2016, 6, 93 5 of 12

type IV isotherm profile indicating these samples are essentially mesoporous in nature. In comparison
to commercial titanium oxide (59 m2¨g´1) our materials possess significantly higher surface area
(generally 400–500 m2¨g´1), without any significant changes in terms of textural properties with
respect to those of the parent MAGSNC, probably due to the low titania loading. These could also be
observed in TEM images. Pore volumes in the 0.40–0.45 mLg´1 range and diameters typical of the
parent SBA-15 material (ca. 6 nm) were also obtained.
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Figure 3. N2 absorption-desorption isotherm of 5% TiO2-MAGSNC photocatalysts. P: partial vapor
pressure of adsorbate gas in equilibrium with the surface at 77.4 K; P0: saturated pressure of adsorbate gas.

Diffuse reflectance (DR) UV-VIS spectroscopy was used to record the optical properties of the
samples. UV-VIS adsorption spectra of TiO2-MAGSNC samples are shown in Figure 4, which showed
extensions of absorption band into the visible region for all catalysts. Significant enhancement of light
absorption of all samples was achieved at a wavelength of around 700 nm, when comparing to those
of pure commercial TiO2 (P25, 386 nm). The extension of light absorption of the synthesized catalysts
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into the visible range was probably resulting from the presence of the photocatalytic composite, iron
oxide phase, on the MAGSNC supports. As a result of the extension of light absorption into the visible
light range, better utilization of the abundant solar energy might be possible.
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Figure 4. Diffuse reflectance (DR) Ultraviolet-Visible (UV-VIS) absorption spectra of different
TiO2-MAGSNC photocatalysts. P25: pure commercial TiO2 from Evonik Industries.

The band gaps of synthesized TiO2-MAGSNC were calculated, based on the Kubelka-Munk
function (Table 1), to be in the 1.62 to 1.67 eV range. These extraordinary low values are derived from
the iron oxide phase formed during ball mill in the synthetic stage as a result of the mechanochemical
process [30,34], which only slightly decrease upon titanium incorporation. With Fe3+ radius (0.64 Å)
close to that of Ti4+ (0.68 Å), the incorporation of Fe3+ into the TiO2 crystal lattice during synthesis may
also take place [35]. The proposed one-pot synthesis procedure might facilitate the incorporation of
Fe3+ and formation of heterojunctions between TiO2 and iron oxide phases during the transformation
of titanium precursor to TiO2 which might favor the charge separation in the catalysts and further
improve the photocatalytic activity.

Table 1. Optical properties of synthesized TiO2-MAGSNC photocatalysts. P25: pure commercial TiO2

from Evonik Industries.

Materials Band Gap [eV] Absorption Threshold [nm]

TiO2-P25 3.21 386
MAGSNC 1.75 705

0.5% TiO2-MAGSNC 1.62 765
1.0% TiO2-MAGSNC 1.63 761
2.0% TiO2-MAGSNC 1.65 751
5.0% TiO2-MAGSNC 1.67 740

In order to analyze the chemical states of the prepared samples, XPS spectra were also recorded.
Figure 5a depicts binding energies (BEs) of ca. 463.3 and 457.5 eV for Ti 2p3/2 and Ti 2p1/2, respectively,
characteristic of the Ti4+ cation with a 5.8 eV spin orbit splitting. The fitting peak with higher binding
energy arises from the Ti4+ species in a Ti–O–Fe structure. Electrons can be induced by transfer
from Ti4+ to Fe3+ in the Ti–O–Fe bond due to the electronegativity difference between Ti4+ (1.54)
and Fe3+ (1.83), which makes Ti4+ species potentially less electron-rich (and Fe3+ more electron-rich),
resulting in the increase of BE for Ti4+ species and decrease of BE for Fe3+ [36]. Peaks at a binding
energy of 723.8 (Fe 2p1/2) and 710.2 eV (Fe 2p3/2) also correlated well to typical signals of Fe3+ from
Fe 2p in Figure 5b, which confirmed the presence of such species in the nanocomposites, in good
agreement with XRD results. Despite the stability of the hematite phase (as most thermodynamically
stable at temperature over 300 ˝C), the magnetic phase was still well preserved after calcination at
400 ˝C. Most importantly, the absence of any Fe2+ species on the external surface in all catalysts can
be confirmed from XPS spectra (Figure 5).
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Both scanning electron microscopy (SEM) and TEM images of the catalysts were in good
agreement with the textural properties and characterization results of the mesoporous nanocomposites
(Figures 6 and 7). Element mapping illustrated for 2% TiO2-MAGSNC pointed out that both Ti4+ and
Fe3+ were homogeneously distributed on the supports, in line with analogous observations for the other
catalysts. Particularly, the fully preserved SBA-15 structure could be visualized in TEM micrographs
of the final photocatalytic nanomaterials, with small nanoparticles (ca. average nanoparticle size
10 nm), in good agreement with XRD results. Titania nanoparticles could not be distinguished from
TEM images, in line with XRD data, which may again relate to a very high dispersion of TiO2 in the
nanocomposites at such low loadings. Results of EDX analysis have been summarized on Table 2,
showing a good agreement in terms of Ti content on the catalysts with respect to the theoretical Ti
content selected. These findings confirm the excellent incorporation of Ti provided by the proposed
mechanochemical approach.

Table 2. Ti and Fe content on TiO2-MAGSNC photocatalysts (obtained from energy-dispersive X-ray
spectroscopy (EDX) analysis).

Sample ID Ti (wt %) Fe (wt %)

0.5% TiO2-MAGSNC 0.2 19.2
1.0% TiO2-MAGSNC 1.0 24.4
2.0% TiO2-MAGSNC 1.7 16.2
5.0% TiO2-MAGSNC 4.7 9.6

The magnetic susceptibility of the TiO2-MAGSNC photocatalysts were summarized in Table 3,
showing that the obtained catalysts all possessed relatively strong ferromagnetism and could be easily
separated from the reaction mixture using a simple magnet.

Table 3. The magnetic susceptibility of the TiO2-MAGSNC photocatalysts.

Sample ID Magnetic Susceptibility (ˆ̂̂ 10´6 m3 ¨̈̈ kg´1)

0.5% TiO2-MAGSNC 116.7
1.0% TiO2-MAGSNC 179.1
2.0% TiO2-MAGSNC 117.7
5.0% TiO2-MAGSNC 130.0
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Figure 7. Transmission electron microscopy (TEM) images of 5% TiO2-MAGSNC photocatalysts.

After characterization, the effectiveness of TiO2-MAGSNC photocatalysts with different TiO2

content was subsequently studied in the photo-oxidation of benzyl alcohol. Photocatalytic activity
experiment results have been summarized on Table 4. With illumination time of 4 h, the reaction
using TiO2-MAGSNC photocatalysts with low TiO2 loading (ď1.0 wt %) provided negligible (<5%)
photoconversion of benzyl alcohol to benzaldehyde, with conversion only increasing with TiO2 loading.
The magnetically-separable support (MAGSNC) or SBA-15 itself did not provide any photoactivity
under otherwise identical reaction conditions. Bare iron oxides can promote the recombination of
photogenerated electron-hole pairs, resulting in inactive materials. Interestingly, a titania loading as
low as 5% onto MAGSNC containing the iron oxide phase could significantly decrease the band gap
of the TiO2 as well as improve the photoconversion of benzyl alcohol (up to 20% in this work) with
a remarkable 84% selectivity to the target product. No over-oxidation products, such as benzoic
acid and/or CO2 from mineralization, were observed in the photo-oxidation of benzyl alcohol
photocatalyzed by TiO2-MAGSNC. Under the same photocatalytic conditions, the photoconversion of
P25 Evonik was obviously quantitative but with an extremely low selectivity to benzaldehyde (32%,
over 65% to mineralization), almost comparable in terms of product yield. The enhancement of the
photocatalytic properties of the TiO2-MAGSNC catalysts, especially in terms of selectivity, makes
very attractive this type of magnetically separable nanocomposite containing low titania content, as
compared to pure P25 commercial photocatalysts.

Table 4. Photocatalytic oxidation of benzyl alcohol to benzaldehyde 1.

Catalyst Conversion [%] Selectivity BHA 2 [%] Yield BHA 3 [%]

Blank (no catalyst) - - -
SBA-15 - - -

MAGSNC - - -
0.5% TiO2-MAGSNC <5 94 -
1.0% TiO2-MAGSNC <5 80 -
2.0% TiO2-MAGSNC <10 73 -
5.0% TiO2-MAGSNC 20 84 17

P25 Evonik >95 32 30
1 Reaction conditions: Co benzyl alcohol = 1.5 mM, 125 W lamp, loading: 1 g/L. (solvent: acetonitrile, air flow:
25 mL/min, temperature: 30 ˝C, reaction time: 4 h). 2 BHA: benzaldehyde. 3 The selectivity of a reaction was
estimated as the ratio of the required product to the undesirable product formed during reaction. Yields were
calculated as the ratio of the desired product formed to the total stoichiometric amount. Amount of substance
(in mol) were determined using high performance liquid chromatography (HPLC) analysis.

4. Conclusions

Magnetically-separable catalysts with different content of TiO2 were synthesized in a one-pot
mechanochemical approach. The synthesized TiO2-MAGSNC photocatalysts showed great improvement
in light absorption into the visible light range (around 700 nm), with an interesting performance in the
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photocatalytic conversion of benzyl alcohol to benzaldehyde, particularly at higher loadings (5% Ti).
The proposed systems will pave the way to further investigations currently ongoing in our group to
the design of photoactive nanomaterials for selective oxidations, which will be reported in due course.
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The following abbreviations are used in this manuscript:

BA Benzyl alcohol
BE Binding energy
BHA Benzaldehyde
ca. Circa
EDX Energy-dispersive X-ray spectroscopy
MAGSNC Magnetically separable nanocomposites
P Partial vapor pressure of adsorbate gas in equilibrium with the surface at 77.4 K
P0 Saturated pressure of adsorbate gas
P25 Pure commercial TiO2 from Evonik Industries
SEM Scanning electron microscopy
TEM Transmission electron microscopy
UV- Vis Ultraviolet- Visible
XPS X-ray photoelectron spectroscopy
XRD Powder X-ray diffraction
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