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Abstract: Water-dispersible ZnS:Mn nanocrystals (NCs) were synthesized by capping the surface
with polar L-aspartic acid (Asp) molecules. The obtained ZnS:Mn-Asp NC product was optically
and physically characterized using the corresponding spectroscopic methods. The ultra violet-visible
(UV-VIS) absorption spectrum and photoluminescence (PL) emission spectrum of the NCs showed
broad peaks at 320 and 590 nm, respectively. The average particle size measured from the obtained
high resolution-transmission electron microscopy (HR-TEM) image was 5.25 nm, which was also in
accordance with the Debye-Scherrer calculations using the X-ray diffraction (XRD) data. Moreover, the
surface charge and degree of aggregation of the ZnS:Mn-Asp NCs were determined by electrophoretic
and hydrodynamic light scattering methods, respectively. These results indicated the formation of
agglomerates in water with an average size of 19.8 nm, and a negative surface charge (´4.58 mV)
in water at ambient temperature. The negatively-charged NCs were applied as a photosensor for
the detection of specific cations in aqueous solution. Accordingly, the ZnS:Mn-Asp NCs showed
an exclusive luminescence quenching upon addition of copper (II) cations. The kinetic mechanism
study on the luminescence quenching of the NCs by the addition of the Cu2+ ions proposed an
energy transfer through the ionic binding between the two oppositely-charged ZnS:Mn-Asp NCs and
Cu2+ ions.
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1. Introduction

Transition metal ion-doped semiconductor nanocrystals have been one of the most attractive
research subjects for the last few decades [1,2]. Since they display unique physical, chemical, and
optical properties, these materials have often been used in various advanced devices, such as non-linear
optics [3] and photovoltaic devices [4] and, more recently, in some advanced biomedical areas for
diagnostic or therapeutic studies [5,6]. Among the most well-known examples, first-row divalent
transition metal ion-doped ZnS nanocrystallites, such as ZnS:Mn [7] and ZnS:Cu [8], have gained
special interest due to their high luminescent efficiency and thermal stability, which are essential
properties required for commercial electro-luminescence devices [9]. There have been many published
articles regarding preparation methods of such materials. However, these methods often require very
high temperatures and pressures, and even the use of biologically toxic chemicals [10–12].

Certain semiconductor nanocrystals such as CdSe/ZnS [13] and InP/ZnS [14] core-shell quantum
dots have been developed as fluorescent labeling agents in biological systems. However, critical
problems such as high toxicity and low solubility in water when they were directly used in vivo have
emerged. In this regard, there have been several papers published regarding the attempt to synthesize
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water-soluble semiconductor nanocrystals by the modification of their surfaces with polar organic
molecules [15]. Among these, thioglycolic acid [16,17] and conventional amino acids [18,19] were
found to be effective capping agents in the synthesis of water-soluble and non-toxic semiconductor
nanocrystals. However, the ligand-dependent surface properties of water-dispersible nanocrystals are
not yet fully understood.

More recently, a novel application of water-soluble semiconductor nanocrystals as selective and
sensitive photo-sensors for the detection of certain metal ions in aqueous solution has gained great
interest due to their significant effects on human health [20,21]. However, the most commonly used
luminescent quantum dots, such as CdS and CdSe, contain environmentally hazardous components.
Therefore, the development of a novel type of semiconductor nanocrystal having no biological toxicity
and high colloidal stability in water is needed for such applications. Previously in our lab, the synthesis
and surface characterization of water-dispersible ZnS:Mn nanocrystals by capping with mercaptoacetic
acid (MAA), and their application as a photosensor for the detection of Zn2+ and Cd2+ ions in aqueous
solution, have been reported [22].

In the present study, water-dispersible ZnS:Mn NCs were prepared by capping the surface with
conventional L-aspartic acid molecules, which was selected as a capping agent due to its structural
advantage for the study aim. An aspartic acid possesses two carboxylic acid moieties that can bind to
both the surface of the ZnS:Mn NCs and the target metal ion at the same time. The surface charge of
the ZnS:Mn-Asp NCs was determined by an electrophoretic light scattering method. For the surface
characterization of the ZnS:Mn-Asp NC product, the degree of aggregation in water was measured
using a hydrodynamic light scattering method. Finally, the ZnS:Mn-Asp NCs with a negative surface
charge was presumed to be suitable for further coordination to transition metal ions in aqueous
solution. This was intended to show the potential of the ZnS:Mn-Asp NCs as a specific transition metal
ion photosensor.

2. Results and Discussion

2.1. Characterizations of the ZnS:Mn-Asp NCs

The average particle size of the ZnS:Mn-Asp NCs was measured from the HR-TEM images
provided in Figure 1. Even though it was difficult to find a clear image of the discrete individual
particles, we enlarged the picture as much as possible and measured diameters of 30 identifiable
spherical shaped particles, along the fringe images, to calculate the average particle size for the
ZnS:Mn-Asp NCs. The shape of most particles was fairly close to spherical, and the average particle
size was 5.25 nm. Little agglomeration between the particles was observed due to evaporation of the
water/alcohol solvent during the sample preparation procedures. However, the appeared distinct
lattice planes in the fringe images, which are spacing to each other about 3 Å distance, indicates
that the ZnS:Mn-Asp NCs were consisted of single crystals rather than adducts of poly-crystalline
mixtures. Precise measurements of the elemental composition of the prepared ZnS:Mn-Asp NCs and
the doping concentration of the manganese (II) ions (Mn2+) were performed using inductively-coupled
plasma-atomic emission spectrometry (ICP-AES). Three trials of sample measurements revealed that
the average elemental proportion of Mn2+ ions relative to the ZnS parent crystals was 1.7%. The doping
concentration of the Mn2+ ions in the ZnS parent crystals was originally intended to be 1%–2%, which
has been reported to be the optimum for PL efficiency in previously-known ZnS:Mn NCs [23,24].

The optical properties of the as prepared ZnS:Mn-Asp NCs were investigated using UV-visible
(UV-VIS) and photoluminescence (PL) spectroscopy. Figure 2a,b show the obtained UV-VIS absorption
and PL emission spectra of the ZnS:Mn-Asp NCs, respectively. The PL spectrum showed a broad
emission peak appeared at 590 nm, which was obtained by adjusting the excitation wavelengths
of the light source at the same as UV-VIS absorption peak of the ZnS:Mn-Asp NCs (320 nm). The
major absorption peak shown in the spectrum probably resulted from the well-known band-to-band
absorption in the ZnS host lattice [25], and the increased band gap of the ZnS:Mn NCs (3.87 eV)
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compared with that of the bulk ZnS:Mn solid (3.54 eV) was likely due to the well-known quantum
confinement effect [26]. The yellow-orange light emission at 590 nm was attributed to the 4T1–6A1

transition of the dopant (Mn2+) ions [27]. The energy transfer between the ZnS host and the Mn2+

activator can be significantly interrupted when the states of the surface defects are located close to
the conduction band of the ZnS, which can reduce the intensities of the emissioin and enlarge the
Stoke shifts. The PL efficiency of the ZnS:Mn-Asp NCs was measured and calculated following the
method reported by Williams et al. [28]. This method includes the calculation of a relative quantum
yield by comparison with that of a commercial organic dye standard, a 0.1 M solution of quinine
sulfate dissolved in sulfuric acid (purchased from Fluka) in this experiment [29], of which the reported
emission wavelength and absolute quantum yield are 550 nm and 0.546, respectively (22 ˝C). The
excitation wavelength for the maesurment of the comparing dye standard was adjusted at the same
value as the ZnS:Mn-Asp NCs, which was obtained from the UV-VIS absorption spectrum of the NCs.
As a result, the calculated relative PL efficiency was 9.81%, which is slightly higher than that of other
amino acid-capped ZnS:Mn NCs measured in water [30].
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Figure 1. High resolution-transmission electron microscopy (HR-TEM) images of the ZnS:Mn-Asp
nanocrystals (NCs). Asp: L-aspartic acid.
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Figure 2. (a) Ultraviolet-visible (UV-VIS) absorption spectrum; and (b) room temperature solution 

photoluminescence (PL) emission spectrum of the ZnS:Mn-Asp NCs. (λmax of the fluorescence peak 

was 590 nm). 

In Figure 3, the wide-angle X-ray diffraction (XRD) pattern obtained from the ZnS:Mn-Asp NCs 

is presented. Among the most broad peaks in the diagram, three identifiable peaks: (111), (220), and 

(311) clearly indicated that the ZnS:Mn-Asp NCs are in the cubic zinc-blende phase (JCPDS 05-0566) 
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the Debye-Scherrer equation using the XRD peak data with that directely measured from the HR-
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selected XRD peaks, we calculated an average particle size for the ZnS:Mn-Asp NCs as 5.41 nm, 

which showed relatively good agreement with that measured from the HR-TEM image. 
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Figure 3. X-ray diffraction (XRD) patterns of: (a) ZnS:Mn-Asp NCs; and (b) ZnS bulk solid in a cubic 

zinc-blende phase (JCPDS 05-0566) as an internal reference. 

Figure 2. (a) Ultraviolet-visible (UV-VIS) absorption spectrum; and (b) room temperature solution
photoluminescence (PL) emission spectrum of the ZnS:Mn-Asp NCs. (λmax of the fluorescence peak
was 590 nm).

In Figure 3, the wide-angle X-ray diffraction (XRD) pattern obtained from the ZnS:Mn-Asp NCs is
presented. Among the most broad peaks in the diagram, three identifiable peaks: (111), (220), and (311)
clearly indicated that the ZnS:Mn-Asp NCs are in the cubic zinc-blende phase (JCPDS 05-0566) [31].
In addition, we also compared the particle size of the ZnS:Mn-Asp NCs calculated by applying the
Debye-Scherrer equation using the XRD peak data with that directely measured from the HR-TEM
image in Figure 1 [32]. Taking the measured values of full width at half maxima (FWHM) of the
selected XRD peaks, we calculated an average particle size for the ZnS:Mn-Asp NCs as 5.41 nm, which
showed relatively good agreement with that measured from the HR-TEM image.

The amino acid (Asp) molecules attached to the surface of the ZnS:Mn NCs were characterized by
Fourier transform infrared (FT-IR) spectroscopy. Figure 4 presents the FT-IR spectrum of ZnS:Mn-Asp
NCs. Table 1 presnts the obtained peak data and their assignments. These specific vibrational modes
were assinged by comparison with previously-reported assignments of the FT-IR spectrum of free
L-aspartic acid (Asp) associated with a computational calculation method [33,34]. In the spectrum, the
overall peaks obtained from the surface capping ligands (Asp molecules) were slightly red-shifted
compared with those of the neat or uncoordinated Asp molecule, since some of the vibrational modes
were restricted by attaching to much heavier transition metal ions (Zn2+ or Mn2+) on the surface of
the nanocrystal lattice [35,36]. The most characteristic peaks of the NC-coordinated Asp molecule
were the two C=O stretching peaks appearing at 1717 and 1641 cm´1. The former carbonyl stretching
peak is similar to that for free Asp. The latter carbonyl peak was not found in the free Asp, and the
intensity of the peak was much smaller than the former carbonyl stretching peak. The latter peak
was assigned as a carbonyl group attached to a metal ion (Zn2+ or Mn2+) on the surface of the NCs,
since the wave number of the peak was very close to the previously-reported Ti2+-coordinated Asp
molecule [37]. Therefore, according to these assignments, one of the carbonyl groups of the Asp
molecule was attached to the nanocrystal surface, while the other carboxyl group and the amine end
remained uncoordinated to impart a hydrophilic nature to the NCs. In addition, any uncoordinated
or unreacted Asp molecules were removed by centrifuging and washing several times with a cold
alcohol/water solution. As a result, the peaks from any free Asp molecules could be removed from
the obtained FT-IR spectrum for the ZnS:Mn-Asp NCs. Finally, the majority of peaks appearing in
the lower region, from 400 to 1000 cm´1, can be assigned as mixed banding modes of C–C, and C–O
moieties of the NC-coordinated Asp molecules.
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Figure 4. Fourier transform infrared (FT-IR) spectrum of the ZnS:Mn-Asp NCs.
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Table 1. FT-IR data and assignments of ZnS:Mn-Asp NCs. (units in cm´1).

ZnS:Mn-Asp Free L-Asp [33] Assignments

Not appeared 479 δ(N–H)
Not appeared 525 δ(C–C–O)

658 643 δ(O–C–O)
874 876 ω(C–C)
899 894 ρ(C–C)
1047 1046 ν(C–N)
1152 1153 ρ(N–H)
1248 1257 ν(C–H)
1310 1312 δ(O–H)
1420 1422 ρ(C–H)
1504 1514 ν(OCO) + δ(C–H)
1641 Not appeared ν(C=O–M)
1717 1736 ν(C=O)
2950 3013 ν(N–H)
3350 3434 ν(O–H, H2O)

(ν—stretching;ω—wagging; δ—in-plane deformation; ρ—rocking).

2.2. Surface Properties of the ZnS:Mn-Asp NCs

To investigate the surface characteristics of the ZnS:Mn-Asp NCs in water, the surface charge
and degree of aggregation were determined by the electrophoretic light scattering method [38] and
hydrodynamic light scattering method [39], respectively. As a result, the zeta potential of the NCs at
ambient temperature was obtained as ´4.58 mV. Considering the acidic nature of aspartic acid, the
negative surface charge of the ZnS:Mn-Asp NCs can be explained by the fact that the protons originally
belonging to the carboxylic ends (COOH) of the Asp molecules were ionized in the water. Therefore,
their conjugate base ion moieties (COO´) on the NC surface actually caused the observed negative
surface charge. However, it should also be noted that the carboxyl end is not so strongly acidic in
water compared with halide acids; thus, not all of the protons in the carboxyl (–COOH) end were
ionized in this environment. A very similar phenomenon was observed for the previously-mentioned
MAA-capped ZnS:Mn NCs, in which the reported zeta potential of the NCs was ´22.38 mV under the
preparation conditions of pH 2 [22]. A plausible explanation for obtaining a much smaller negative
charge value for the ZnS:Mn-Asp NCs is that a portion of the ionized protons were attracted to the
neighboring amine (NH2) end of the Asp molecules to form NH3

+ moieties, in order to cancel out the
negative charge caused by the (COO´) ends. However, the two opposite charges did not perfectly
cancel each other out, since the preparation pH conditions were far below from the known isoelectric
point of Asp molecules (pI = pH 5.74, CAS 617-45-8).

Secondly, the measured particle size distribution of the ZnS:Mn-Asp NCs in water indicates that
the NCs formed various sized aggregates in water. The calculated average size of the agglomerates
was 19.8 ˘ 2.78 nm. These agglomerates likely formed from the intermolecular interaction (mostly
hydrogen bonding) between the COO and NH groups in the capping aspartic acid molecules on
neighboring ZnS:Mn NCs, since the NCs were originally observed to form 5 nm-sized particles in
the solid state according to the previously shown HR-TEM image and the Debye-Scherrer’s XRD
calculation. Similar intermolecular attractions between the capping molecules on the NC surface for
L-glycine and L-alanine capped ZnS:Mn NCs have been reported [18], in which the intermolecular
interaction (also mainly hydrogen bonding) between the amino acid molecules caused the formation
of huge agglomerates of the corresponding ZnS:Mn-aminoacid nanocrystals (from 250 nm to a few
micrometer in size) in water. However, the degree of aggregation for the ZnS:Mn-Asp NCs was
relatively low in water compared to other aminoacids capped ZnS:Mn NCs, which was probably due
to the electrostatic repulsion between the negatively-charged NC surfaces. A similar phenomenon has
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been seen with ZnS:Mn-MAA NCs prepared at pH 7, with the formation of much larger agglomerates
in water than at pH 2, in which the repulsion between the NCs was significantly reduced [40].

2.3. Photosensor Activity of the ZnS:Mn-Asp NCs

Since the negatively-charged NCs were presumed to be suitable for further coordination by
positively charged transition metal ions, the ZnS:Mn-Asp NCs were tested as a cation photosensor
for Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ ions. As a result, fast and exclusive luminescence
quenching was observed upon the addition of an aqueous solution containing Cu2+ ions, as shown in
a light scattering picture in Figure 5.Nanomaterials 2016, 6, 82 7 of 15 
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Figure 5. Light scattering image of the ZnS:Mn-Asp NCs upon addition of transition metal ions, taken
under irradiation of He-Cd laser (325 nm) light. (‘Blank’ refers to ZnS:Mn-Asp NCs only).

Additionally, Figure 6 presents the photoluminescence (PL) emission spectra following the
addition of divalent transition metal ions to the ZnS:Mn-Asp NC-containing solution. As can also
be seen in these spectra, the strong emission peaks of the ZnS:Mn-Asp NCs remained for most metal
ions, while Cu2+ ions caused almost complete fluorescence quenching. This unique result led us to
preliminarily conclude that the ZnS:Mn-Asp NCs can be used as a selective metal ion photosensor for
Cu2+ ions in water. The sensing limit of the added molar concentration of metal ions ([M]) was 8.2 µM
over 1.0 mg/L ZnS:Mn-Asp NCs. Both Figures 5 and 6 were obtained by adjusting the concentrations
of [Cu2+] at 15 µM over 1.0 mg/L of the ZnS:Mn-Asp NCs to make sure that the orange-yellow
fluorescence light of the NCs was completely disappeared by the addition of the Cu2+ ions, while
that of other transition metal-NC mixture samples were almost unchanged. At this concentration, the
measured [Cu2+]/[NCs] ratio was 0.32, according to an additional inductively coupled plasma atomic
emission spectroscopy ( ICP-AES) analysis.

Previously, we have reported a similar study of the use of surface-modified ZnS:Mn NCs with
a different ligand (mercaptoacetic acid, MAA) for the detection of heavy transition metal ions in
aqueous solution [22]. However, their fluorescence quenching effects were totally different from
those of the ZnS:Mn-Asp NCs. The addition of transition metal ions to the ZnS:Mn-MAA NCs
caused the yellow-orange emission light to remain only when Zn2+ and Cd2+ ions were added, while
other metals caused almost complete fluorescence quenching. The proposed mechanism for these
results is that the added metal ions were coordinated by the MAA ligands belonging to neighboring
ZnS:Mn NCs to form a metal-bridged nanocrystal composite. Subsequently, additional energy transfer
between the nanocrystals and the coordinated metal ions caused quenching of the luminescence
from the ZnS:Mn NC parents. Since the ZnS:Mn-Asp NCs showed different metal ion selectivity
of luminescence quenching, one can speculate that the quenching mechanism must be different
from that of the ZnS:Mn-MAA NCs. In fact, the results seen with the ZnS:Mn-Asp NCs were quite
similar to those for the mercaptopropionic acid (MPA)-capped CdTe nanoparticles, which showed
an exclusive fluorescence quenching effect for Cu2+ ions in aqueous solution [41]. The proposed
quenching mechanism was ionic binding of the Cu2+ ions with the CdTe-MPA NCs according to
modified Stern-Volmer kinetics [42,43]. We also evaluated the degree of decrease in PL intensity as
the concentration of Cu2+ ions gradually increased. As a result, the obtained data fit well into the
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modified Stern-Volmer equation: ln(Imax/I) = 1 + k[Q], where k is the phosphorescence quenching
constant, which is related to the quenching efficiency of the quencher, and [Q] is the concentration of
the quencher ([Cu2+]). The resulting plot, Figure 7, shows a linear relationship between 0 and 100 µM
(R2 = 0.9989). The obtained quenching rate constant value (k = 3.14 ˆ 104 M´1) was calculated from
the slope of the line. The plot of ln(Imax/I) as a function of [Cu2+] indicates that the luminescence
quenching of the ZnS:Mn-Asp NCs was probably due to the ionic binding between the ZnS:Mn-Asp
NCs and the added Cu2+ metal ions. For these experiments, the molar concentration of the ZnS:Mn-Asp
NCs was fixed at 200 mg/L, and the addition concentration range of [Cu2+] was carefully selected
to avoid complete luminescence quenching in order to obtain proper ln(Imax/I) ratio values. There
are several known fluorescence quenching mechanisms for colloidal semiconductor nanocrystals
upon addition of various transition metal ions such as energy transfer, complex formation, and ionic
binding quenching processes in the literature [44]. The complex formation and ionic binding quenching
processes are often referred to as static and dynamic quenching, respectively. A tremendous amount
of kinetic studies regarding those fluorescence quenching mechanisms were carried out, and it was
suggested that obtaining a linear relationship between the luminescence intensity changes and the
variation of the added metal ion concentration using a Stern-Volmer equation supports the static
(complex formation) quenching mechanism, while the latter (ionic binding) shows a linear fitting in a
modified (natural log-dependent) Stern-Volmer equation [45,46]. Based on the suggestions by these
kinetic studies, we concluded that the quenching mechanism of the ZnS:Mn-Asp NC upon addition of
Cu2+ ions is more close to the ionic binding quenching process since we obtained the linear fitting plot
of ln(Imax/I) vs. [Cu] by using the modified (natural log-dependent) Stern-Volmer equation.
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Figure 6. Emission (PL) spectra of the ZnS:Mn-Asp NCs following the addition of divalent transition
metal ions. The emission peak of the ZnS:Mn-Asp-Cu (brown) was exclusively diminished. (‘Blank’
refers to no addition of transition metal ions).

In addition, to support the proposed ionic binding mechanism, particle size distribution diagrams
were taken before and after the addition of a small amount of Cu2+ ion-containing solution to the
ZnS:Mn-Asp NCs. As can be seen in Figure 8, the original ZnS:Mn-Asp NCs formed agglomerates with
an average size of 19.8 nm in water, however, the addition of the Cu2+ ion-containing solution caused
the formation of larger agglomerates with an average size of 58.4 nm. According to ICP-AES elemental
analysis of the ZnS:Mn-Asp-Cu solid mixture, the [Cu]/[NC] ratio was 0.03. For this analysis, the
ZnS:Mn-Asp-Cu solid mixture was isolated and washed with a cold water/alcohol mixture to remove



Nanomaterials 2016, 6, 82 9 of 15

any uncoordinated free Cu2+ ion salt. Therefore, the copper ions detected by the ICP-AES in the solid
mixture probably belong to the NC-Cu adducts.
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It has been shown that the NC surface-attached Cu2+ ions induced electron transfer from the
NCs to cause luminescence quenching by reduction of the copper to the +1 oxidation state [41].
Therefore, we also evaluated the oxidation state of the copper ions after addition to the ZnS:Mn-Asp
NCs. As shown in Figure 9, the electron paramagnetic resonance (EPR) spectrum obtained from the
ZnS:Mn-Asp-Cu adducts clearly showed a diamagnetic character, indicating that the copper ions were
reduced from Cu2+ (d9) to Cu1+ (d10). In this experiment, the added amount of the Cu2+ ions was
carefully controlled to achieve a [Cu]/[Mn dopant] atomic ratio of 250, since the paramagnetic Mn2+

ions doped in the ZnS:Mn-Asp NCs and the remaining free (not bound to the NCs) Cu2+ ions can
also affect the EPR measurement. Thus, paramagnetic peaks for the Mn2+ ions became negligible in
the EPR spectrum. This result can be considered as direct experimental evidence that the electron
transfer process from the NCs to the Cu2+ ions causes the luminescence quenching of the NCs. In
addition, the exclusive quenching of the ZnS:Mn-Asp NCs by copper ions can be explained by the fact
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that the reduced Cu1+ ions (d10 species) can be easily stabilized by relieving the Jahn-Teller distortion,
while other metal ions do not have significant energetic motive to induce the electron transfer from the
ZnS:Mn-Asp NCs. In addition, the exclusive metal ion (Cu2+) quenching selectivity of the ZnS:Mn-Asp
NCs can also be explained by applying the Irving and Williams’ calculations of the stability constants of
complex formation for various transition metal ions with various poly-dentate ligands [47]. According
to the paper, copper (II) ions have an exceptional affinity to the carboxyl ends of the amino acid
molecules compared to other divalent transition metal cations. Even though most divalent transition
metal ions have some extent of affinities to the carboxylate anion, the aspartic acid molecules attached
on the ZnS:Mn-Asp NCs also have a neighboring positive NH3

+ group to strongly repel approaching
metal cations. Therefore, only copper (II) ions, which possess the highest affinity to the carboylate
anion, can barely bind to induce further electron transfer from the ZnS:Mn-Asp NCs in this condition.Nanomaterials 2016, 6, 82 10 of 15 
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Figure 9. X-band electron paramagnetic resonance (EPR) spectrum of the ZnS:Mn-Asp-Cu adduct
(solid) taken at 200 K. The spectrum of a paramagnetic CuCl2 (d9) solid (dashes) is also presented
for comparison.

Some other possible quenching mechanisms for the semiconductor nanocrystals upon addition
of metal ions have been proposed by several research groups. For instance, Xie et al. [48] studied
and reported a luminescence quenching mechanism of the bovine serum albumin (BSA) modified
CdSe/ZnS quantum dots upon addition of Cu2+ ions in aqueous solution. They proposed that copper
(II) ions are small enough to penetrate between the bulky BSA capping ligands and they can react with
sulfide ions attached on the surface of the CdSe/ZnS quantum dots (QD) to form a CuS crystal on
the surface of the QD. Growing of the CuS can decrease the band gap of the QD, which can induce
a non-radiative electron-hole recombination process. However, the quenching mechanism of the
ZnS:Mn-Asp NCs is obviously different from the CdSe/ZnS QD case because the Cu2+ ions bound to
the ZnS:Mn-Asp NC surface were reduced to Cu1+ ions, according to our EPR measurement, while
the CuS crystal should maintain the Cu2+ oxidation state to build-up a stable crystal structure on the
different crystal surface. Other different luminescence quenching mechanisms have been proposed
that the surface-capping ligands can be removed from the NC surface by formation of stable complexes
with added metal ions, which also induce huge agglomerations and precipitations of the NCs in water
to diminish the fluorescence of the NCs [49]. However, in that case, the original oxidation state of
the metal ions should not be changed after complexation since the electron transfer from the NCs to
metal ions is impossible in this environment, so this case was also excluded from our explanation for
the fluorescence quenching mechanism of the ZnS:Mn-Asp NCs. However, a very similar electron
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transfer process from NCs to Cu2+ metal ions has been reported by Chen et al. [50] in the fluorescence
quenching study of thioglycerol-capped CdS NCs by Cu2+ ions. The authors observed that Cu2+ ions
attached to the NC surface were completely reduced to Cu1+ ions, which facilitated non-radiative
recombination of excited electrons in the conduction band and holes in the valence band, in which
a kinetic study also showed a similar linear fitting relationship in ln(Imax/I) vs. [Cu]. Therefore, the
most plausible luminescence quenching mechanism for the ZnS:Mn-Asp NCs is that the Cu2+ ions
were attracted by the negatively-charged ZnS:Mn-Asp NCs, and then bound to the surface of the NCs
followed by an electron transition occurred from the NCs to the Cu2+ ions to induce the reduction of
the Cu2+ ions, which directly caused the luminescence quenching by interrupting the electron-hole
recombination process at the Mn centers in the ZnS:Mn-Asp NCs at the same time.

Finally, it is notable to mention that the totally different quenching metal selectivity of the
ZnS:Mn-Asp NCs compared with the previously reported ZnS:Mn-MAA NCs probably caused by the
presence of the neighboring NH3

+ moiety in the aspartic acid molecule. The carbonyl group in the
MAA molecule can form a stable complex with an added transition metal cation in water. However, in
the aspartic acid molecule, the neighboring NH3

+ group can interrupt to form a stable complex since
the protonated amine functional group has the same positive charge with the metal ions in this pH
condition. Therefore, the ZnS:Mn-Asp NCs were not able to advance a complexation-electron transfer
pathway for the quenching as in the ZnS:Mn-MAA NCs. The important role of the side amine group
in aspartic acid, in the formation of a complex with a metal ion, has been shown in several crystal
structures containing the [metal-Asp] complexes in the literature, in which the central metal ion was
coordinated by the COO and NH ends of the Asp, together, to stabilize the complexes [51,52].

3. Experiemntal

3.1. Instrumentation

The HR-TEM images shown in the present article were taken by a JEOL JEM 1210 electron
microscope (JEOL, Tokyo, Japan). The range of magnification mode and accelerating voltage were 1000
to 800,000 and 40–120 kV respectively. To prepare the samples, ZnS:Mn-Asp NC powder was dried
and dispersed in methanol, then it was placed on a carbon-coated Cu grid (300 mesh) followed by
drying in a vacuum oven for 20 h. UV-VIS absorption spectra were obtained by using a Perkin Elmer
Lamda 25 spectrophotometer (Waltham, MA, USA) which is equipped with a deuterium/tungsten
lamp. The solution photoluminescence (PL) spectra were taken by using a Perkin Elmer LS-45
spectrophotometer (Waltham, MA, USA) which is equipped with a 500 W Xenon lamp, a 0.275 m triple
grating monochrometer, and a PHV 400 photomultiplier tube. A Rigaku 300 X-ray diffractometer
(Rigaku, Tokyo, Japan) equipped with a Cu Kα (1.54 Å) wavelength light source was used to obtain
the XRD pattern diagrams. The elemental analyses for the ZnS:Mn-Asp NCs were performed using
an Optima-430 (Perkin Elmer, Waltham, MA, USA) ICP-AES spectrometer containing an Echelle
optics system and a segmented array charge-coupled device (SCD) detector. The FT-Raman spectra,
which were obtained to characterize the surface capping Asp molecules, were recorded using a Bruker
FRA106/s spectrophotometer with a resolution of 1 cm´1. The reported surface charge and the degree
of agglomerations of the ZnS:Mn-Asp NCs in aqueous solution in this article were measured using an
ELS-8000 Zeta-PSA spectrometry (Otsuka Electronics, Tokyo, Japan) which is equipped with a 10 mW
He/Ne laser light source. Finally, the presented EPR spectrum was obtained using a Bruker X-band
CW-EPR (9–9.8 GHz) (ELEXSYS-II E 500, Madison, WI, USA).

3.2. Synthesis of the ZnS:Mn-Asp NCs

ZnS:Mn-Asp NCs were synthesized by following a previously reported method of
L-valine-capped ZnS:Mn NCs, which involes a formation of [zinc (II) ion-aminoacid] moiety containing
reactive intermediate complexes [51]. ZnSO4¨ 5H2O (1.44 g, 5 mmol) was dissolved in 50 mL water
and the mixture was slowly added to a 50 mL aqueous solution containing 10 mmol of L-aspartic acid
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at 5 ˝C (an ice-water bath used). The mixture solution was warmed to room temperature standing 1 h
of stirring. For nucleation of the seed crystal and doping, MnSO4¨ H2O (0.02 g, 0.1 mmol) and Na2S
(0.40 g, 5 mmol) were dissolved in 20 mL deionized water. The resulting mixture was subsequently
added to a flask containing the [Zn-Asp] intermediate complexes under vigorous stirring. The whole
mixture solution was refluxed for 10 h, followed by slow cooling to room temperature and the addition
of absolute ethanol, which afforded an white-grey precipitate at the bottom of the flask. Finally, the
product NC solids were separated by centrifugation and decanting of the water-ethanol supernatant.
The solids were transferred and dried for 24 h in a vacuum oven. Detailed experimental data are listed
in Table 2.

Table 2. Experimental data summary of ZnS:Mn-Asp NCs. (ICP-AES: inductively couples plasma
atominc emission spectroscopy; PSA: particle size analyzer; DLS: dynamic light scattering.)

Methods Data

UV-VIS absorption (λmax, nm) 320
PL emission (λmax, nm)PL efficiency (%) 5909.81
concentration Mn dopant, ICP-AES (%) 1.70

Average Particle Size, HR-TEM (nm) 5.25
Average Particle Size, XRD (nm) 5.41
Zeta Potential, Zeta-PSA (mV) ´4.58

Average size of aggregates in water, DLS (nm) 19.8

3.3. PL Efficiency Measurements

The PL efficiency of the ZnS:Mn-Asp NCs was measured and calculated by following the same
method reported by Williams et al. [28]. This method is frequently used to calculate a relative quantum
yield by comparison to a standard organic dye [29], a 0.1 M solution of quinine sulfate in H2SO4

(purchased from Fluka, Seoul, Korea) in this case, of which the fluorescence wavelength and absolute
quantum yield are reported to be 550 nm and 0.546, respectively (22 ˝C). The excitation wavelength
used for the commercial organic dye standard was adjusted at the same with the ZnS:Mn-Asp NCs,
which was obtained from the UV-VIS absorption spectrum. The emission spectra for both the standard
and the ZnS:Mn-Asp NCs were recorded at five different concentrations in aqueous solution. A graph
of integrated PL intensity versus absorbance for both samples obtained at different concentrations
was plotted, and the relative PL efficiency for the ZnS:Mn-Asp NCs was calculated by applying the
following equation:

∅X “ ∅ST

ˆ

GradX

GradST

˙

˜

ε2
X

ε2
ST

¸

In this equation, ∅ represents PL efficiency. The subscript ST and x denote the standard dye
and the NCs, respectively. In addition, ‘Grad’ is the gradient from the plot of integrated fluorescence
intensity versus absorbance, and ‘ε’ indicates the solvent refractive index. In fact, we excluded the
solvent factor by using the same solvent (water) for both the standard and the ZnS:Mn-Asp NCs.

4. Conclusions

Recently, low-dimensional semiconductor nanocrystals have received attention as a novel type
of photosensor material for the detection of certain metal ions in biological systems, as well as in
drinking and waste water. Since ZnS:Mn NCs can provide a novel platform to attract transition
metal cations to its surface by the proper control of the surface-capping ligands, it can be used for
a variety of applications in photo-sensing devices. In the present study, conventional amino acid
L-Asp-capped ZnS:Mn NCs were successfully synthesized, and their characteristic surface properties
were investigated using spectroscopic methods. In addition, the related physical and optical properties
were also investigated. The as-prepared water-dispersible ZnS:Mn-Asp NCs showed remarkable
physicochemical properties for further applications in an advanced photosensor device. In particular,
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in the present study, ZnS:Mn-Asp NCs showed very different photosensor activity compared with
other ligand-capped ZnS:Mn NCs, indicating that one can control the selectivity of the ZnS:Mn NCs
for certain metal ions simply by changing the surface-capping ligand. This has not been seen in other
semiconductor nanocrystals in the literature, making them a unique candidate for various metal ion
sensors using a single NC source. In addition, it was also demonstrated in this study that both the
degree of aggregation in water and the surface charge of the capping ligand are critical factors to be
considered for further application in any commercial device.
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