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Abstract: Nickel is set to play a crucial role to substitute the less-abundant platinum in clean
electrochemical energy conversion and storage devices and catalysis. The controlled design of
Ni nanomaterials is essential to fine-tune their properties to match these applications. A systematic
study of electrospinning and thermal post-treatment parameters has been performed to synthesize Ni
materials and tune their morphology (fibers, ribbons, and sponge-like structures) and composition
(metallic Ni, NiO, Ni/C, Ni3N and their combinations). The obtained Ni-based spun materials
have been characterized by scanning and transmission electron microscopy, X-ray diffraction and
thermogravimetric analysis. The possibility of upscaling and the versatility of electrospinning open
the way to large-scale production of Ni nanostructures, as well as bi- and multi-metal systems for
widened applications.
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1. Introduction

Considering the low abundance of platinum, the research interest in common metals to replace it
for electrochemical and catalytic reactions is renewed. In this context, nickel based materials (sharing
the same group of the periodic table with Pt) play a crucial role in hydrogen production, as well as
in several clean energy conversion and storage devices. Metallic nickel, as well as its oxides and
nitrides, due to their great (electro) catalytic activity and low cost, are widely used to generate H2

by reforming reactions [1,2], borohydride decomposition [3], water electrolysis [4–6] and splitting [7].
Nickel and its compounds are also employed as electrocatalysts, co-catalysts or catalyst supports
in fuel cells operating in various conditions and temperatures, including solid oxide [8], proton
exchange membrane [9–12], alkaline [13,14], and microbial fuel cells [15]. Nickel materials also catalyze
other environmentally relevant reactions including the electrochemical conversion of CO2 [16,17].
Of particular interest is the use of nickel nanowires as the starting point for the synthesis of core@shell
nickel@platinum one-dimensional (1D) electrocatalysts, using a simple galvanic displacement reaction,
which was able to surpass the U.S. Department of Energy target of oxygen reduction mass activity for
proton exchange membrane fuel cells (PEMFC) [9,18,19], which provided one source of motivation for
this work.

To further improve the physico-chemical and (electro) catalytic properties of nickel,
the preparation of nickel nanofibers with a three-dimensional (3D) network structure is of particular
interest. Indeed, not only their considerable surface to volume ratio could be exploited, but also their
porous 3D architecture could be beneficial for electrochemical and catalytic reactions.

Ni-based nanowires have been synthesized by several chemical and physical routes, including
electrodeposition on 1D materials (e.g., carbon nanotubes [20]) or templates (e.g., polycarbonate
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membranes [21]), electroless plating [22], chemical vapor deposition [23], microwave-assisted
synthesis [24], solvothermal [25] and wet chemical processes [26]. Ni and NiO nanowires have
been also prepared by electrospinning [27–31]. This technique presents several advantages compared
to the other physico-chemical synthesis routes cited above: efficiency, reproducibility, high yield,
simplicity, low-cost, and high versatility [32]. The latter concerns not only the chemical compositions,
but also the wide range of morphologies and architectures achievable. Furthermore, the preparation of
electrospun materials is easily up-scalable through the availability of setups including multiple needle
or needle-less electrospinning. In the recent papers exploring electrospinning of Ni-based materials,
however, no systematic study has been made of the parameters allowing targeted compositions and
morphologies to be achieved.

The rational design of Ni-based nanomaterials with controlled morphologies and compositions
is crucial to fine-tune their properties in view of specific catalytic and electrocatalytic applications.
In the present work, we describe a general route using electrospinning to obtain nickel-based 1D
nanomaterials. Several synthesis parameters have been investigated, including the metal precursor,
solvent and carrier polymer, as well as the thermal post-treatments performed (number of steps,
gas atmosphere, and temperature). We demonstrate a range of strategies to tune the morphology
(nanofibers, nanoribbons, sponge-like structures) and composition (Ni, NiO, Ni3N, Ni/C as well
as their combinations), thus giving a means of obtaining the appropriate materials for the targeted
application. Electrospinning is straightforward and up-scalable, allowing for large-scale production
and enabling new and industrially relevant opportunities for the manufactured materials.

2. Results and Discussion

2.1. Morphological and Structural Characterization of the Ni-Based Electrospun Materials

For the preparation of nickel-based electrospun nanofibers, the conventional approach consists
of two main steps: (1) the electrospinning of a metal precursor with a carrier polymer (to obtain
salt/polymer 1D structures) and (2) the calcination in air of the as-spun materials (to remove the
polymer and obtain metal oxide fibers); if metallic nickel is the desired phase, the calcination is
followed by the reduction of the oxide to metal fibers. In this work, we started from this route and
first investigated the electrospinning solution parameters, namely the metal precursors (nickel acetate
and nitrate), the carrier polymers (polyvinylpyrrolidone—PVP—and polyvinylalcohol—PVA—and
the solvents (water, ethanol and ethanol with addiction of water or dimethylformamide—DMF).
Furthermore, we modified the thermal treatments adding or removing intermediate steps and varying
the gas atmospheres. A schematic representation of the general approach we used is depicted in Figure 1.
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The electrospinning process is the deciding factor in tuning the morphology: the 1D materials
shape (fibers, ribbons or a combination of the two) and the diameter distribution depend on this
step; further minor morphological modifications and the final crystalline phases are controlled by the
successive thermal treatments.

2.1.1. Morphological Differences of Different Electrospinning Based NiO Synthesis

At first, we focused on the final morphology of 1D NiO obtained using various electrospinning
procedures to produce polymer/nickel precursor mats followed by a conventional calcination in air
at 600 ◦C to remove the carrier polymer and oxidize the nickel salts to nickel oxide. The concentration
and spinning parameters shown were chosen after careful optimization aimed at maximizing the
suitability and reproducibility of the experiment and the uniformity of the spun mats obtained.

The NiO nanofibers in Figure 2 have an average diameter of 67 nm (σ = 13.5 nm) and were
obtained by spinning an aqueous solution of PVA and nickel acetate; these results are in line with those
obtained by a similar synthesis [33] and smaller than the NiO nanofibers with an average of 135 nm
previously reported for electrospun PVA/Ni(NO3)2 [28]. This route proved to be extremely slow as
flow rates larger than 0.2 mL/h could not be applied. Due to the nature of the polymer, specifically its
limited solubility in ethanol and DMF, this composition could not be investigated in the formulation of
alternative electrospinning solutions.
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Figure 2. (a) Scanning electron microscopy (SEM) micrograph and (b) corresponding histogram of fiber
size distribution of NiO fibers obtained from 12 wt % polyvinylalcohol and 12 wt % nickel acetate in H2O.

The morphology of 1D NiO materials obtained spinning a solution of PVP and nickel acetate in
pure ethanol is ribbon-like (Figure 3a,c,e) and extremely dependent on the solution concentration: small
increases in carrier polymer concentration from 9 wt % to 10 wt % changed the average dimension
from 159 nm (σ = 45 nm) to 275 nm (σ = 75 nm), in agreement with dynamic viscosity values
(Table 1). The tendency to form ribbons can be associated with the rapid evaporation of the solvent
that can produce a dry polymer skin around the electrospun jet; these tubes then collapse under
electro-dynamic forces once the target is reached (especially in the case of rotating drums) forming
continuous ribbons [34,35].

Table 1. Details of the optimized electrospinning parameters.

Carrier Polymer
(wt %)

Nickel Precursor
(wt %) Solvent Dynamic

Viscosity (Pa·s)
Applied

Voltage (kV)
Flow Rate

(mL/h)
Target

Distance (cm)

PVA (12) Ni acetate (12) Water 0.460 15 0.10 12
PVP (9-10-11) Ni acetate (9-10-11) Ethanol 0.086/0.092/0.126 10 1.00 12

PVP (10) Ni acetate (10) Ethanol:DMF 7:3 vol 0.064 10 1.00 12
PVP (11) Ni nitrate (11) Ethanol:water 1:1 wt 0.130 14 0.20 10
PVP (9) Ni nitrate (9) Ethanol:DMF 1:1 wt 0.071 20 0.25 12

PVA: polyvinylalcohol; PVP: polyvinylpyrrolidone; DMF: dimethylformamide.
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A further increase in concentration from 10 wt % to 11 wt % led to instability during the
spinning and to the formation of secondary jets together with an increase in ribbon average dimension
(Figure 3e,f): thinner fibers can be observed amidst the ribbons of 445 nm (σ = 54 nm) [35]. The large σ

values observed for ribbon-like structures is related to a variation in the observable lateral dimension
as a function of the angle between the flat side of the ribbon and the SEM point of view; what is
measured is the projected surface dimension that does not always coincide with the real dimension.

Replacing pure ethanol with a mixture of ethanol/DMF (7:3 vol.) in the electrospinning solution,
solid skin formation is prevented by the presence of the higher boiling point solvent and the 1D
morphology produced is fibrous and not ribbon-like; thick nanofibers with average diameter of 160 nm
(σ = 25 nm) were obtained (Figure 3g,h).

The change of nickel salt from acetate to nitrate leads to the impossibility of using pure ethanol as
solvent for the electrospinning solution; a mixture of water or DMF and ethanol is necessary in order
to prevent polymer precipitation.
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Figure 3. SEM micrographs and corresponding histograms of size distribution of NiO electrospun
in the same conditions as 9 (a,b), 10 (c,d), 11 wt % (e,f) polyvinylpyrrolidone and nickel acetate in
ethanol (a,b) and in ethanol:dimethylformamide (7:3 vol.) (g,h).
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In addition, in this case, the presence of a higher boiling point solvent in the solution favoured
formation of fibers, rather than ribbons (Figure 4). A large difference is found in the average diameter
of the NiO fibers: those obtained from 11 wt % PVP and 11 wt % nickel nitrate in H2O/ethanol
(1:1 wt ratio) have an average diameter of 58 nm (σ = 12 nm), while the fibers obtained from 9 wt %
PVP and 9 wt % nickel nitrate in DMF/ethanol (1:1 wt ratio) have an average diameter of 151 nm
(σ = 22 nm). In this case, it is evident that the nature of the solvent has a larger impact on the
materials obtained than the concentration of the solution. Surprisingly, a water-based solution led
to the formation of fibers three times smaller than the DMF counterpart, despite the higher salt and
polymer concentration. This phenomenon can be attributed to the different rheological properties of
the two electrospinning solutions. The dynamic viscosity of the water/ethanol solution has been found
to be higher than that using DMF/ethanol (0.130 Pa·s vs. 0.071 Pa·s), which alone cannot explain the
lower diameter obtained with the first [34]. A major role can be played by the higher conductivity of
the water based solution, mainly due to higher ion content, as well by its higher surface tension.
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2.1.2. Thermal Treatment Effect on Crystalline Structure and Grain Morphology

NiO is not the only crystalline phase that can be obtained after thermal treatment of polymer/Ni
salt fibers. Nevertheless, it is usually the first stage of a more complex multi-step process when metallic
nickel or nickel nitrides are the desired phases. While NiO is obtained by direct calcination in air of the
as-spun materials, other phases can be obtained by further thermal treatments in various atmospheres.
Furthermore, tuning the electrospinning process is not the only way to change the final morphology.
In particular, temperature and duration of the thermal treatments that follows the calcination play a
crucial role in determining the final morphology of the nanomaterial.

Hydrogen mediated nickel oxide reduction to metallic nickel is a well-known process [36–39] that
has been successfully applied to electrospun nanofibers [28]. When pure hydrogen atmosphere is used,
a temperature as low as 250 ◦C and a 30 min time are sufficient to fully convert pure NiO fibers into
Ni. However, when a mixture of hydrogen and argon (5% hydrogen) is used at 250 ◦C, even times as
long as 12 h are not sufficient to completely reduce NiO, as demonstrated by the XRD diffractograms
depicted in Figure 5.
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hydrogen (a) vs. H2/Ar; and (b) Joint Committee on Powder Diffraction Standards (JCPDS) reference:
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A common result of the reduction process is a slight increase of the crystallite grain size as
presented both in the SEM micrograph of the ribbons and in the TEM micrograph of nanofibers before
and after the reduction step (Figure 6).

Loosely connected ribbons or fibers can be converted into an interconnected sponge-like
nanostructure by increasing the reduction temperature: the SEM image in Figure 7 shows the same
NiO nanofibers reduced at 250 ◦C and 400 ◦C.
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Figure 6. SEM micrographs of NiO ribbons (obtained from polyvinylpyrrolidone (PVP) and nickel
acetate in ethanol) and transmission electron microscope (TEM) micrographs of NiO nanofibers
(obtained from PVP and nickel acetate in DMF/ethanol) before (a,c) and after reduction at 250 ◦C
in H2 (b,d).
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An alternative strategy to the calcination followed by the reduction process described above
is the thermal decomposition of a solution of the polymer and the nickel salt at high temperature
(700 ◦C) in inert atmosphere that can directly furnish metallic nickel crystals. This process tends to
produce hybrid carbon/nickel materials that can be potentially used as catalysts for hydrocarbon
hydrocracking [40] and supercapacitors [41]. From the TEM micrograph in Figure 8a, it is clear that
the fibers are constituted of nickel grains in a carbonaceous matrix. The XRD in Figure 8b confirmed
that the only crystalline phase present is pure metallic nickel. From thermogravimetric analysis in air,
a carbon content of 25 wt % was calculated for the PVP derived fibers. This value can be reduced by
replacing PVP with other carrier polymers. As an example, we can cite polyvinylbutyral, leading to a
small residual carbon contamination (below 1 wt %).Nanomaterials 2016, 6, 236 7 of 12 
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2.2. Application of Nickel Electrospun Nanofibers in Fuel Cells 

Figure 8. TEM micrograph of Ni/C composite fibers (obtained from PVP and nickel acetate in
DMF/ethanol at 700 ◦C under nitrogen (a) and the corresponding XRD diffractogram (b) JCPDS
reference: Ni 96-151-2527.

An alternative nickel crystalline phase that received attention for its application for examples
in Li-ion batteries, supercapacitors and solar cells is nickel nitride [42,43]. Changing the reducing
atmosphere from hydrogen to ammonia and controlling the reaction temperature, it is possible to
obtain nickel nitride from nickel oxide or metallic nickel. At low temperatures, the direct conversion in
NH3 of nickel oxide to nitride is not possible [44]. On the other hand, at a high temperature, the Ni3N
obtained treating the oxide in ammonia is not stable and spontaneously reduces to Ni(0). It is thus
possible to obtain Ni3N from NiO by modulating the temperature of the ammonia treatment: first,
the oxide is reduced to nickel metal at high temperature (650 ◦C), and then it is converted to the nitride
at low temperature (250 ◦C) (Figure 9b). The high temperature reduction tends to profoundly change
the morphology and the fibrous structure is lost (Figure 9a), giving rise to a sponge-like Ni3N structure.
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2.2. Application of Nickel Electrospun Nanofibers in Fuel Cells 

Figure 9. SEM micrograph of a sponge-like Ni3N structure (obtained from NiO nanofibers derived
from PVP and nickel acetate in DMF/ethanol) (a) and the corresponding XRD diffractogram (b) before
and after the two-step complete conversion in NH3. JCPDS reference: Ni3N 00-010-280, Ni 96-151-2527.

Alternatively, metallic nickel fibers can be converted to nickel nitride in ammonia at 250 ◦C. In this
case, time can be used to control the degree of conversion without changes to the original morphology:
nickel nitride or nickel/nickel nitride nanofibers can thus be obtained (Figure 10).
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of fibers with different degrees of conversion to the nitride phase (b) JCPDS reference: Ni3N 00-010-280,
Ni 96-151-2527.

2.2. Application of Nickel Electrospun Nanofibers in Fuel Cells

Core@shell nickel@platinum nanofibres have demonstrated being promising electrocatalysts for
PEMFC [9,18,19]. They can be prepared by the straightforward and efficient galvanic displacement
based on the exchange of peripheral metal ions with ions from another metal with a higher reduction
potential. This opens the possibility of forming a thin platinum film around nanofibres fabricated
using less expensive, more abundant metals than platinum such as nickel. The 2D morphology of the
electrocatalyst films has been shown to produce 10 fold higher surface activity (minimizing unused
noble metal) and better durability than conventional Pt/C electrocatalysts (lowering electrochemical
Ostwald ripening) [45].

In this work, the Pt/Ni galvanic displacement has been performed [46] onto nickel fibres obtained
by electrospinning solutions of PVP and nickel acetate in ethanol, followed by calcination and reduction
steps (see Figure 6d). In the STEM image and the EDX maps of the obtained Ni@Pt 1D nanomaterials
(Figure 11a,b) platinum presents an island-like morphology, demonstrating the efficient replacement
of surface Ni atoms by Pt. Furthermore, the nickel core does not appear to be damaged or etched.
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Figure 11. STEM image of platinum on nickel nanofibres after the galvanic displacement (a), overlay of
the EDX maps of Ni (red) and Pt (green) (b) and oxygen reduction reaction (ORR) at 5 mV/s in 0.1 M
HClO4 saturated with O2 at 400, 900, 1600, 2500 RPM (c).

Electrochemical characterisation has been performed on these core@shell electrocatalysts in acidic
medium. The electrochemical surface area calculated from the cyclic voltammetry (not shown here)
was 21 m2/g in agreement with metal islands instead of separated nanoparticles. No nickel peaks are
detected, showing that the inner metal is not exposed as a contiguous Pt coverage has been achieved.
The activity of the Pt/Ni nanofibres towards the oxygen reduction reaction (ORR) was evaluated in
HClO4. From the ORR currents reported in Figure 11c, a mass activity at 0.9 V/RHE of 42 A/g can
be calculated.
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3. Materials and Methods

3.1. Materials

Nickel(II) nitrate hexahydrate (Sigma-Aldrich St. Louis, MO, USA, puriss, p.a. > 98.5%) and
nickel(II) acetate tetrahydrate (Aldrich, St. Louis, MO, USA, purum, p.a. > 99.0%) were used as
nickel precursors salts. Polyvinylalcohol (Aldrich, Milwakee WI, USA, 98%–99% hydrolized Mw

85,000–146,000), polyvinylbutyral (Butvar B98, Sigma, St. Louis, MO, USA) and polyvinylpyrrolidone
(Aldrich, Steinheim, Germany, Mw ~1,300,000) were used as carrier polymers. MilliQ water (18 MΩ),
N,N-dimethylformamide (Sigma-Aldrich Chromasolv®Plus for HPLC > 99.9%, Irvine, UK) and ethanol
(Sigma-Aldrich, Steinheim, Germany, puriss.) were used as solvents. Chloroplatinic acid hexahydrate
(ACS reagent, ≥37.50% Pt basis, Aldrich, St. Louis, MO, USA) was used for galvanic displacement.

3.2. Synthesis of Ni-Based Nanofibers

A common synthesis procedure was used for all the materials presented in this paper.
The electrospinning solutions were prepared by first dissolving the carrier polymer in the solvents
of choice, and, in a second stage, the nickel salt precursor was added; once a clear solution was
obtained, it was transferred to a plastic syringe and fed to a linearly sliding electrospinning needle
using Teflon tubes. The flow rate was regulated with a syringe pump. A Spraybase® electrospinning
system (Dublin, Ireland) equipped with a rotating drum and a 0–30 kV power supply was used in all
of the experiments.

Details of the optimized electrospinning solution/condition used are gathered in Table 1, while
details of the thermal treatments are collected in Table 2.

Table 2. Details of the thermal treatments.

Procedure Starting Material Ramp
(◦C/min)

Dwell Time
(min)

Dwell
Temperature (◦C) Gas Gas Flow

(cc/h) Obtained Phase

Calcination Polymer + nickel salt 1 60
(I) 150

air – NiO(II) 250
(III) 600

Reduction NiO 5 30 250 H2 50 Ni
High temperature

decomposition Polymer + nickel salt 1 300 700 N2 50 Ni (C matrix)

Direct conversion
into nitride

NiO 5 360
(I) 600 NH3 50 Ni3N
(II) 250

Conversion into
nitride Ni 5 0-60 250 NH3 50 Ni3N

3.3. Characterization of Ni-Based Nanofibers

The morphology of the electrospun materials before and after the different thermal treatments
was characterized by SEM using a FEI Quanta FEG (Field Emission Gun) 200 (Hillsboro, OR, USA)
equipped with EDS, and TEM using a JEOL 1200 EXII (Tokyo, Japan).

XRD patterns of the Ni supports were recorded at room temperature in Bragg–Brentano
configuration using a PANAlytical X’pert diffractometer (Almelo, Netherlands), equipped with a
hybrid monochromator, operating with CuKα radiation (λ = 1.541 Å), and using a step size of 0.1◦ 2θ
in the 2θ domain from 20◦ to 80◦.

Thermogravimetric analysis to determine the carbon content on the Ni/C composite fibers was
performed in air up to 1000 ◦C (10 ◦C/min) using a Netzsch TG 439 thermobalance (Selb, Germany).

The dynamic viscosity of the electrospinning solutions was measured with a shear rheometer
(Paar Physica UDS 200, Graz, Austria) at RT.

3.4. Pt Deposition on to Nickel Nanofibres

Platinum was deposited on the nickel nanofibres from aqueous chloroplatinic acid hexahydrate
solution using an approach described elsewhere [46]. At the end of the exchange process, the nanofibres
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were collected by filtration and carefully washed with ethanol and water. A complete exchange leads
to 30% platinum loading.

3.5. Characterisation of Ni@Pt Nanofibres

The morphology of the Ni@Pt 1D materials has been characterized by TEM using a JEOL 2200FS
(Tokyo, Japan) (Source: FEG) microscope operating at 200 kV equipped with a Charge Coupled Device
camera Gatan USC (16 MP) (Pleasanton, CA, USA). For TEM analyses, samples were suspended in
ethanol and sonicated before deposition on to carbon-coated copper grids.

Electrochemical characterisation was carried out in a conventional three-electrode cell consisting
of a glassy carbon rotating disk electrode (RDE) (working electrode, geometric area of 0.196 cm2),
a reversible hydrogen electrode (reference electrode, RHE) and a platinum wire (counter electrode).
A Pine bipotentiostat model AFCBP1 (Grove City, PA, USA) was used. All of the potential values are
referred to the RHE. Inks were prepared dispersing 5 mg of catalysed support in 300 µL of isopropanol,
20 µL of water, and 15 µL of 5 wt % Nafion. These inks were then deposited onto the RDE surface
with a micropipette to give a final Pt loading of ~100 µg·cm−2. Cyclic voltammetry was carried out at
100 mV/s in N2 saturated 0.1 M aqueous HClO4 and the electrochemical surface area of platinum was
calculated by integrating the peak of hydrogen desorption from the Pt sites. ORR was conducted on
an RDE in an oxygen saturated 0.1 M HClO4 aqueous electrolyte at increasing rotating speeds (400,
900, 1600, 2500 RPM) chosen in order to achieve equally spaced saturation currents (Koutecky-Levich).

4. Conclusions

We investigated the effect of electrospinning and thermal treatment parameters on morphology
and composition of 1D nickel, nickel oxide and nickel nitride. This systematic screening has given
insights, enabling improved understanding of the formation process of hybrid and inorganic spun
nanomaterials, leading to an informed choice of synthesis procedure by the possibility of tuning their
structure and the related properties. The obtained nanofibers/ribbons/sponges of nickel, nickel oxide,
nickel/carbon, and nickel nitride are promising candidates for application in catalysis as well as energy
conversion and storage. As an example, the use of nickel electrospun materials as electrocatalyst
supports for fuel cell electrodes after their surface modification by Pt galvanic displacement has been
proofed in this work.

Considering the flexibility and good scalability of electrospinning, as well as the versatile applicability
of Ni-based compounds, this work opens the way for the rational and large-scale production of metallic
materials towards binary and multi-metallic systems with a widened application range.
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