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Abstract: A strategy for growth of porous Ni2GeO4 nanosheets on conductive nickel (Ni) foam
with robust adhesion as a high-performance electrode for Li-ion batteries is proposed and realized,
through a facile two-step method. It involves the low temperature hydro-thermal synthesis of
bimetallic (Ni, Ge) hydroxide nanosheets precursor on Ni foam substrates and subsequent thermal
transformation to porous Ni2GeO4 nanosheets. The as-prepared Ni2GeO4 nanosheets possess
many interparticle mesopores with a size range from 5 to 15 nm. The hierarchical structure
of porous Ni2GeO4 nanosheets supported by Ni foam promises fast electron and ion transport,
large electroactive surface area, and excellent structural stability. The efficacy of the specially
designed structure is demonstrated by the superior electrochemical performance of the generated
Ni2GeO4 nanosheets including a high capacity of 1.8 mA·h·cm−2 at a current density of 50 µA·cm−2,
good cycle stability, and high power capability at room temperature. Because of simple conditions,
this fabrication strategy may be easily extended to other mixed metal oxides (MxGeOy).
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1. Introduction

Mixed metal oxides, MxGeOy (M = Zn, Cu, Cd, Co, Ge and In), as one of the most important
families of functional inorganic materials, have numerous applications in the field of catalysts
and optical devices, due to their abundant physical and chemical properties [1–7]. For example,
Zn2GeO4 (with a band gap of 2.6–2.8 eV) can be used as a visible-light-sensitive photo-catalyst [5].
Ni2GeO4 loading with Pt nanoparticles exhibited high catalytic activity for CO oxidation [8]. However,
the synthesis of such mixed metal oxides is still very challenging by wet chemistry routes because
of the high valence state of Ge4+ and high stability of GeO2 that make GeO3

2− only exist in an
alkaline environment. So the most successful work with respect to the synthesis of MxGeOy (except for
Zn2GeO4) is based on a solid-chemistry strategy using Na2GeO3 as the precursors. Furthermore,
MOxGeO2 is a more common final product than pure-phase MxGeOy. Because most of the transition
metal ions have strong metallicities, the single-component transition metal oxides are very stable.
Therefore, it is important and urgent to develop an aqueous and controllable synthesis of MxGeOy.

Ni2GeO4 is an ideal candidate as high-performance anode materials for Li-ion batteries (LIBs).
Because it contains the cheaper metal elements of Ni, which can reduce the content of deficient and
expensive Ge, the overall cost will thus be effectively cut [9–12]. Furthermore, in theory, the Ni can
be used as both a buffering and conductive agent during cycling, which is beneficial for battery

Nanomaterials 2016, 6, 218; doi:10.3390/nano6110218 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2016, 6, 218 2 of 9

performance [13–15]. However, there are limited studies focusing on Ni2GeO4-based anodes materials
for Li-ion batteries [16,17].

Recently, nanostructures engineering has become a primary and popular strategy to
improve the performance of batteries, as nanostructures have several advantages over their bulk
counterparts [18–23]. First, a nanostructure provides a short transport path which can shorten the
Li ions diffusion time. Second, the nanostructure may induce large numbers of electroactive sites
into electrodes, which is beneficial to the high current rate performance [20]. More importantly,
with nanostructures, the strain can be significantly reduced during lithiation and dilithiation process;
thus, the nanostructure preserves the structural integrity of the electrode and leads to a more stable
cycle performance [21,22]. However, most electrodes are commonly binder-enriched electrodes made
by traditional slurry-coating technique for electrochemical evaluation. It is evitable that the organic
binder will decrease the portion of the electroactive surface and block the contact of electrode with
electrolyte. Moreover, the binder will seriously decrease the electrical conductivity of the electrode
materials. Therefore, to achieve superior electrochemical performance, it is highly desirable to directly
disperse and wire up electroactive mesoporous to an underlying conductive substrate. By this method,
the tedious fabrication process of the electrode can be avoided. More importantly, electroactive
materials with large naked surface and good electrical conductivity can have direct contact with both
the electrolyte and the substrate for high efficiency energy storage [18,19].

Based on the aforementioned considerations, we developed a facile two-step strategy to grow
porous Ni2GeO4 nanosheets on Ni foam with robust adhesion. The hybrid structure of Ni2GeO4@Ni
foam was then directly used as an anode for Li-ion batteries at room temperature. Remarkably,
the as-prepared 3D hybrid structure of Ni foam supported porous Ni2GeO4 exhibited good cycling
stability. This evidenced Ni2GeO4@Ni foam as a promising electrode for Li-ion batteries.

2. Materials and Methods

Germanium oxide (GeO2, AR), Ni foam (2 mm thick, 420 g·m−2, Changsha Lyrun New Material
Co. Ltd., Changsha, China), Concentrated Ammonia (NH4OH, AR, Beijing Chemical Works, Beijing,
China), HCl (AR, Beijing Chemical Works, Beijing, China). All reagents were used as received without
any further purification.

X-ray diffraction (XRD) patterns were collected on Bruker D8 Advance Powder X-ray
diffractometer (Karlsruhe, Germany) using Cu Kα radiation. The scanning electron microscopy
(SEM) was performed by using a field emission scanning electron microscopy (FESEM, HITACHI,
S-4800, Tokyo, Japan). Transmission electron microscopy (TEM), high-resolution transmission electron
microscopy (HRTEM), and energy dispersive X-ray spectroscopy were conducted with a JEM-2100
electron microscope (JEOL, Tokyo, Japan). X-ray photoelectron spectroscopy (XPS) analysis was carried
on an ESCALAB MK II X-ray photoelectron spectrometer (VG scientific instrument co., Landon, UK).

The electrodes were cut into disks (with a diameter of 8 mm) before transferring into an
Argon-filled glove box. Coin cells (CR2025) were laboratory-assembled using Li metal as the counter
electrode, Celgard 2400 membrane as the separator and 1 M LiPF6 in ethylene carbonate (EC)/dimethyl
carbonate (DMC) (EC/DMC, 1:1 wt %) as the electrolyte. The galvanostatic charge-discharge tests
were carried out on a Land Battery Measurement System (Land, Wuhan, China). Cyclic voltammetry
(CV) was performed using a VMP3 Electrochemical Workstation (Bio-logic Inc., Grenoble, France).

In a typical procedure, 100 mg of GeO2 was added in 30 mL water and 100 µL ammonium
hydroxide was dissolved into water to form transparent solutions. Then the pH of the solution was
adjusted to 7.1 with 1 M HCl. After that, a piece of Ni foam (washed by ethanol) was added into the
mixed solution. Then the mixed solution was transferred into a stainless steel autoclave with a Teflon
liner of 50 mL capacity and heated in an oven at 120 ◦C for 7 h. After the autoclave had cooled naturally
to room temperature, the Ni foam was rinsed with distilled water and ethanol alternately. Finally,
Ni2GeO4 on Ni foam was obtained by annealing the precursor in N2 at a ramp rate of 4 ◦C·min−1 and
holding at temperatures of 700 ◦C for 1 h.
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3. Results and Discussion

3.1. Electrode Synthesis and Microstructure Characterization

In our synthesis strategy, two steps are involved: mixed metal (Ni, Ge)OxOHy precursors in situ
grown on Ni foam followed by a calcination process in N2 to form Ni2GeO4. First, the NiO (metallic Ni
on the surface of Ni foam can react with O2 in air to form NiO) on the surface of Ni foam reacted
with NH4+ to form Ni(NH3)6

2+ which is the nickel resource during the reaction. According to this
method, it can avoid rapid formation of Ni(OH)2 precipitation due to the high concentration of Ni2+

in the solution, which is unfavorable for in situ growth of (Ni, Ge)OxOHy. Then, the generation of
Ni(NH3)6

2+ results in the uniform precipitation of mixed (Ni, Ge)OxOHy on the Ni foam surface by
reacting with GeO3

2− and OH− in the solution. The whole process may comprise of electrochemical
reactions as follows:

GeO2 + NH4OH Ô GeO3
2− + NH4

+ + H2O (1)

NiO + NH4+ Ô Ni(NH3)6
2+ + H2O (2)

Ni(NH3)6
2+ + GeO3

2− + OH− Ô (Ni, Ge)OxOHy + NH3 (3)

Subsequently, the formed precursors were thermally transformed to black Ni2GeO4 supported on
the Ni foam. The dehydration reaction can be described as follows:

(Ni, Ge)OxOHy Ô Ni2GeO4 + H2O (4)

The morphology and structure of the as-prepared products were investigated by different
characterization techniques. As shown in Figure 1a, the XRD patterns confirm that one of the
constituents for the precursor is Ni3Ge2O5(OH)4. The peaks at 2θ = 33.44◦, 35.47◦ and 59.47◦ can
be well indexed with the (132), (206) and (330) of Ni3Ge2O5(OH)4 reflections (JCPDS No. 11-0097),
respectively. However, the molar ratio between Ni and Ge in Ni3Ge2O5(OH)4 precursor (3:2) is
lower than that in the final products Ni2GeO4 (2:1). It is possible that this difference arises from the
partial constituent of the precursor (Ni(OH)2 with poor crystallinity) [8]. Therefore, the precursor
has been estimated to be (Ni3Ge2O5(OH)4)·(Ni(OH)2), which is in accord with the Ni/Ge molar ratio
of Ni2GeO4. The energy dispersive X-ray spectroscopy (EDX) analysis has proved that Ni and Ge
element exactly co-exist in the precursor (as shown in Figure S1). Figure 1b shows a representative
low-magnification SEM image of the precursor supported on a Ni foam substrate. It can be found that
the Ni foam remains in a 3D grid structure with hierarchical macro-porosity after the hydrothermal
reaction. To further reveal its microstructure, Figure 1c shows a high magnification top-view SEM
image of Figure 1b (the region marked). Evidently, the precursor is a layer of uniform nanosheets
vertically aligned on the surface of the Ni foam. The thickness of the nanosheet layer is about 400 nm
(as shown in the Figure 1d). TEM measurements were carried out to further investigate the structure
of as-prepared precursor. This further confirms the nanosheet structure of precursor, as shown in
Figure 1e. It can be found that nanosheets exhibit transparent silk-like morphology, indicating the
ultrathin nature, which is analogous to graphene. Some nanosheets crosswise assemble to form a
petal structure, as shown in Figure 1f. Furthermore, we found that the as-obtained precursors are also
highly sensitive to the pH of the mixed solution. Figure S2a,b shows SEM images of the precursor
without controlling the pH value (the pH value is about 8.7). Instead of nanosheets, there are only
some nanoparticles on the surface of the Ni foam. In addition, the NH4+ and GeO3

2− are also necessary
to form nanosheets. As shown in Figure S2c,d, there are also some nanoparticles on the surface of Ni
foam after hydrothermal reaction without adding GeO2. Analogously, the nanosheet does not form
during the hydrothermal reaction without adding NH4OH, as shown in Figure S2e. Furthermore,
the reaction time also affects the morphology of nanosheets. Figure S3 shows SEM images of samples
obtained at different stages of the reaction, 3 and 12 h respectively. It can be found that nanosheets
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become more and more compact and thick along with the increase of reaction time. When the reaction
time is 7 h (shown in Figure 1c), the density and thickness of nanosheet are the most suitable. So we
chose 7 h as the reaction time. It should be noted that the nanosheet precursor can also grow in situ
on other conductive substrates, such as Cu foil (Figure S4a–d) and stainless steel wire (Figure S4e–h).
These results indicate that the current synthesis is a general method, which may be used to prepare
other mixed metal oxides.
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Figure 1. (a) X-ray diffraction (XRD) patterns, (b–d) scanning electron microscopy (SEM),
and (e,f) transmission electron microscopy (TEM) images of as-prepared precursor.

In order to obtain the pure-phase Ni2GeO4 nanocrystals, the precursors were sintered at 700 ◦C
for 1 h under N2 atmosphere. The phase-transformation is quite obvious after heat treatment, as shown
in the XRD patterns of Figure 2a. The peaks corresponding to Ni3Ge2O5(OH)4 disappear completely.
The six new peaks at 2θ = 30.69◦, 36.14◦, 43.28◦, 54.59◦, 58.14◦ and 63.87◦ appear, which are well
indexed with the (220), (311), (400), (422), (511) and (440) of Ni2GeO4 reflections (JCPDS No. 10-0266),
respectively. After conversion into Ni2GeO4, the basic morphology of the samples is conserved without
calcination-induced significant alterations, as shown in Figure 2b,c. These as-formed nanosheets
are intertwined with each other, which creates loose porous nanostructures with abundant open
space for volume expansion and electroactive surface sites. TEM measurements were carried out
to further investigate the structure of the as-synthesized samples. The TEM images in Figure 2d,e
illustrates that the product retained hierarchical flower-like nanostructures. Due to the much larger
lateral size than the thickness, the morphologies of bending, curling, and crumpling are clearly
observed. The dark strips are generally the folded edges or wrinkles of the nanosheets. Moreover,
it can be clearly seen that numerous inter-particle mesopores with a size ranging from 5 to 15 nm
are generated after the heat treatment owing to the loss of high contents of OH− groups in the
precursors. The lattice spacing of nanoparticles is about 0.295 nm in the HRTEM images (Figure 2f),
which corresponds well with the characteristic (220) planes of fluorite phase Ni2GeO4. It is well
known that the mesoporous structures in nanosheets are important to facilitate the mass transport of
electrolytes within the electrodes for fast charging/discharging. The porous structure will also greatly
increase the electrode/electrolyte contact area and buffering of the volume change during cycling,
and thus further enhance the electrochemical performance.
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Figure 2. (a) XRD patterns, (b,c) SEM, (d,e) TEM, and (f) high-resolution TEM (HRTEM) images of
as-prepared Ni2GeO4.

The more detailed elemental composition and the oxidation state of the as-prepared Ni2GeO4

are further characterized by X-ray photoelectron (XPS) measurements. Figure 3a shows the Ni 2p
emission spectrum. The Ni 2p at 851.8 eV is typical of metal-oxygen (NiO) bonds, indicating that
NiO forms on the surface of Ni foam. After growing the precursor on the Ni foam, the Ni 2p shifts
to 856.5 eV, because of the formation of Ni–OH bonds [24], which is in accord with the result of XRD
(Figure 1a). After heat treatment, the Ni 2p shifts to 856 eV. This is due to the loss of OH− groups
and forming of Ni–O bonds at high temperature. It should be noted that the binding energy of Ni
2p in Ni2GeO4 is higher than that in NiO, which is characteristic of Ni3+. Figure 3b shows the O 1s
emission spectrum. It can be found that the changed trend of O 1s is similar to that of Ni 2p, indicating
a process of dehydration during heat treatment [25]. Figure 3c shows the Ge 3d emission spectrum
of as-prepared samples. The binding energy become lower after heat treatment [26], indicating the
forming of Ge2+. It may be caused by the redox reaction between Ge4+ and Ni2+ at high temperature.
These data show that the surface of the as-prepared Ni2GeO4 has a composition containing Ge4+, Ge2+,
Ni2+ and Ni3+.Nanomaterials 2016, 6, 218 6 of 9 
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as-prepared samples.

3.2. Cell Assembly and Electrochemical Performance

To highlight the merits of the unique architecture, we directly use the hybrid structure of porous
Ni2GeO4 nanosheets supported on Ni foam as a self-standing anode for Li-ion batteries. Coin cells
with metallic Li counter electrode are assembled, directly applying the Ni foam support Ni2GeO4

nanosheets as an electrode. Galvanostatic discharge-charge technique is employed to evaluate the
electrochemical performance at room temperature. To identify the lithiation mechanism of Ni2GeO4,
cyclic voltammetry (CV) was first performed. Figure 4a shows the CV scans of as-prepared samples
in the voltage window of 0.01–3 V at a scan rate of 0.2 mV·s−1. In the first cathodic scan, three main
reduction peaks were observed. The remarkable cathodic peak located at around 1.5 V is ascribed to
the insertion of Li+ into Ni2GeO4 to form LixNi2GeO4 [27–29]. The cathodic peak located at around
0.75 V is ascribed to the decomposition of LixNi2GeO4 into Ni, Ge and Li2O and the formation of
the solid electrolyte interface (SEI) film [30,31]. The sharp peak starting at about 0.25 V indicates
the Li-Ge alloying reactions [30]. In the anodic scan process, a broad peak center at 0.55 V can be
observed, which is assigned to the delithiation of Li-Ge alloys. It is noted that a peak located at 1.4 V
presents the reoxidation of Ni and Ge. The peak located at 2.4 V may correspond to the reforming of
Ni2GeO4, which is different from the CV curves of Zn2GeO4 [4]. This may be correlated to the high
valence state Ni3+. However, further research is needed to confirm these analyses. More state-of the-art
characterization methods, such as electron energy loss spectroscopy (EELS) spectra recorded in TEM
mode with a spread beam, would be helpful to provide direct evidence.

Figure 4b shows the discharge-charge voltage profiles cycled under a current density of
50 µA·cm−2 over the voltage range of 0.01–3 V vs. Li+/Li. The initial discharge and charge areal
capacities are 1.85 and 1.9 mA·h·cm−2, respectively. It should be noted that the charge capacity
is higher than discharge, which is due to the oxidation of Ni on the surface of Ni foam at high
voltage. After the first cycle, the discharge profile can be divided into three parts: the initially sloped
area between 2.0 and 1.0 V stems from the insertion of Li+ into Ni2GeO4, because of a typical solid
solution reaction [32–34]. This is followed by another sloped area from 1 to 0.4 V, which is due to
the electrochemical decomposition of Ni2GeO4 to Ni and Ge through a conversion reaction. Finally,
the sloped area from 0.4 to 0.01 V is assigned to the delithiation of Li-Ge alloys, according to the
results of CV test. It can be found that the first discharge profile is not in keeping with the CV curve
and the following discharge profiles. This is a universal phenomenon for metallic oxide [35–38].
It is worth noting that there is a discharge sloped plateau at about 1.5 V (after first cycle) with a
capacity 0.7 mA·h·cm−2. So Ni2GeO4 is also a promising cathode material with high capacity for
Li-ion batteries.

The cycling performance of Ni2GeO4 porous nanosheets is shown in Figure 4c, which exhibits
its excellent cyclability with high capacity. At the current density of 50 µA·cm−2, the reversible areal
capacity is 1.9 mA·h·cm−2 in the first cycle and remains at 1.25 mA·h·cm−2 after 100 cycles. Even at the
high current density of 200 µA·cm−2, an appealing cycle performance of 0.9 mA·h·cm−2 after 100 cycles
can be obtained. Notably, the Ni2GeO4 porous nanosheets still shows high Li+ storage and excellent
cycling stability even at a very high rate (Figure 4d). For testing, the cell was discharged/charged at
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various current densities from 50 to 500 µA·cm−2 each for five cycles. The reversible areal capacities
are 1.7, 1.3, 0.9 and 0.8 mA·h·cm−2 at 50, 100, 200 and 500 µA·cm−2, respectively, exhibiting attractive
rate performance.
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Figure 4. (a) Representative cyclic voltammetry (CV) curves of Ni2GeO4 porous nanosheets for the
first 3 cycles at a scan rate of 0.5 mV·s−1 between 0.01 V and 3 V; (b) Voltage profiles of Ni2GeO4

porous nanosheets at a current density of 50 µA·h·cm−2; (c) Cycling performance of Ni2GeO4

porous nanosheets at a current density of 50 and 200 µA·h·cm−2; (d) Rate performance of Ni2GeO4

porous nanosheets.

4. Conclusions

In summary, an advanced three-dimensional electrode was fabricated by growing porous Ni2GeO4

nanosheets on Ni foam for high-performance Li-ion batteries. The efficient two-step synthesis involves
growing a bimetallic (Ni, Ge) hydroxide precursor on Ni foam, and subsequent thermal conversion
into Ni2GeO4. The as-prepared Ni2GeO4 nanosheets possess numerous inter-particle mesopores with
a size of 5 to 15 nm. Owing to these advantageous structural features, this hybrid electrode of porous
Ni2GeO4 nanosheets supported on Ni foam are able to deliver high capacity with good cycling stability.
The simple and effective synthesis strategies, coupled with excellent electrochemical performance,
make Ni2GeO4 an attractive anode material for LIBs. Our work opens up the possibility of constructing
advanced electrodes for mixed metal oxides (MxGeOy).
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