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Abstract: A one-step synthesis of magnetic nickel nanowires (NiNWs) with tunable characteristics
is reported. The method is simple and easy to be conducted, leading to high compatibility with
scaling-up. It is discovered that the size and morphology of NiNWs can be adjusted by tuning the
reaction temperature, time length, as well as surfactant concentration. It is found that the products
have shown high purity which remained after being stored for several months. A remarkable
enhanced saturation magnetization of the product was also observed, compared to that of bulk nickel.
By providing both practical experimental details and in-depth mechanism, the work introduced in
this paper may advance the mass production and further applications of NiNWs.
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1. Introduction

In the view of nanomaterials, morphology and size are proved to serve a significantly important
role in determining their properties, such as reactivity, opto-electronic, and magnetic properties [1,2].
Nickel (Ni) is a celebrated magnetic material, having potential applications in storage media,
microwave absorption, catalysis, and clinical treatment [3–7]. It is remarkable that magnetic properties
of Ni nanomaterial are strongly dependent to the finite-size effect, and can be varied by controlling
the shape and size [8,9]. Diverse types of morphologies and sizes of Ni nanomaterials have been
synthesized, including chains [10], belts [11], tubules [12], rods [13], triangular plates [14], hexagonal
hierarchy [9], hollow spheres [15], particles, and flowers [16]. Among these members, nickel
nanowire (NiNW) is a prominent example for having different properties from bulk metal due to
the one-dimensional (1D) geometry and large shape anisotropy, which can enhance the coercivity
and prevent it from becoming superparamagnetic [17,18]. Based on the special properties of NiNWs,
numerous promising applications have been achieved, such as optical sensing, plasmonic resonance
sensors, perpendicular magnetic storage, functional devices, negative permeability, biological
separation, wire-grid type micro polarizer, trenches, and capacitors [19,20].

Different techniques generating NiNWs include, but are not limited to, chemical vapor deposition
(CVD) [21], electrochemical deposition [19,22], electrospinning [23,24], bacterial system approach [25],
microwave-assisted process [17,26], and solvothermal methods [27]. Despite these techniques
successfully fabricating products, a further scale-up of production would be mitigated for the
specialized requirements and cost, such as the templates (CVD and electrodeposition), high voltage
(electrospinning), biological culture (bacterial system), high energy processing, Teflon-lined stainless
steel autoclaves (solvothermal approach), or microwave generators (microwave heating). Consequently,
an approach which could be conducted with little time, without catalysts or extraneous chemicals,
at a relatively low temperature, under ambient pressure conditions is desirable for synthesis of NiNW
with a well-defined 1D structure. To date, various groups have been focusing on this expectation and

Nanomaterials 2016, 6, 19; doi:10.3390/nano6010019 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
http://www.mdpi.com/journal/nanomaterials


Nanomaterials 2016, 6, 19 2 of 10

investigated several simple and mild conditions [28–34], yet there are still some gaps. For instance,
when using sodium borohydride (NaBH4) as the reduction agent, boron could be absorbed into the
product [30,35] and, thus, the NiNWs are no longer pure elemental metal. Meanwhile, it should be
noted that sodium hydroxide (NaOH) has been widely used in NiNWs synthesis [11,36–38] for serving
as a pH adjustor and catalyst [39]. Since it is not a necessary chemical for 1D structure formation,
we would like to design the experiment without NaOH.

Therefore, the development of a facile method to synthesize high purity NiNWs is necessary
and important. In this work, we synthesized highly pure NiNW with a mild and conducive reaction
which does not need extraneous chemicals. These pure NiNWs showed high stability under ambient
conditions. At the same time, investigations of reaction conditions for morphology controlling were
conducted based on the information from X-ray diffraction (XRD), scanning electron microscopy (SEM),
transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), and vibrating
sample magnetometer (VSM). Our method and the results in this article are expected to provide
useful information for further NiNW researches such as biological applications, and its industrial
mass production.

2. Results and Discussion

The NiNWs synthesized with typical conditions was characterized to study its structure and
morphology. The product was a dark gray solid with metallic luster, having a nice dispersibility in
ethanol, and it could be sufficiently attracted by an external magnet (Figure 1a,b). The process of
dispersing and aggregating was reversible. The XRD pattern peaks (Figure 1c) located at 44.5˝, 51.9˝,
76.5˝, and 92.9˝ could be matched with (111), (200), (220), and (311) crystalline planes corresponding
to the face-centered cubic (fcc) structure of Ni (Joint Committee on Powder Diffraction Standards File
No. 04-0850). The XRD analysis revealed that the NiNWs were crystallized with a lattice constant of
2.037 Å. Dimensions of product were evaluated from the analysis of 50 individual NiNWs to represent
the general size of the product, while the morphology would consist of the surface appearance of
NW and the shape anisotropy expressed by the aspect ratio or length-to-width ratio (LWR) calculated
with the mean values of length and width. SEM images (Figure 1d,e) demonstrate NiNWs having
an average length of 52 ˘ 17 µm, an average diameter of 330 ˘ 60 nm, and corresponding LWR of
158 ˘ 58. Based on the TEM images, the body of NiNWs indicated highly uniform shape (Figure 1f).
Smaller diameters appeared than the NW main body, and there were nanoparticles linked to the NiNW
end (Figure 1g). Several isolated Ni nanospheres were observed existing among NWs (Figure 1d).
However, the amount of NiNWs was dominant in this system, at about 99%, and the amount of Ni
nanoparticles would reduce with more washing.

In order to have better control on the NiNW size and morphology in this system, investigations
of the impact from three reaction parameters, namely temperature, time, and surfactant concentration,
on the product were conducted.
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Figure 1. The photographs of nickel nanowires (NiNWs) (a) dispersed in ethanol (b) attracted by an 
external magnet, (c) X-ray diffraction (XRD) patterns, (d) low and (e) high magnification scanning 
electron microscopy (SEM) images of NiNWs; and the transmission electron microscopy (TEM) 
images of (f) the body and (g) the end of a NiNW. 

2.1. Reaction Temperature Control 

We found that the reaction temperature plays an important role in determining the size and 
morphology of NiNWs. Experiments were conducted with reaction temperature at 60, 70, 80, 90, 100, 
110, 120, 125, 135, and 150 °C. SEM images indicate a continuous change of NiNW appearance with 
the reaction temperature (Figure 2a–c). As the temperature increased, the reaction increased in 
efficiency. For instance, it took about 100 min to form floating solid product at 70 °C, while only  
5 min required to complete NiNW formation at 150 °C. The changes of average length, average 
width, and LWR versus the temperature were given in line charts (Figure 2d–f). The largest shape 
anisotropy belonged to the NWs synthesized at reaction temperature of 100 °C, and it dropped 
sharply when the temperature reached above 125 °C. Lower reaction temperatures lead to larger 
dimensions of NiNWs and palpable growth of the surface nanopricks. Although products 
synthesized at lower temperature should have larger dimensions than the ones synthesized at 
higher temperature, they usually had many NWs with short length or fragments which diminishing 
the average values. It should be noted that there was an obvious decrease of yield when reaction 
temperature was below 90 °C, and eventually no product was obtained at 60 °C. The size and 
number of nanopricks on the NiNW surface can sufficiently influence the surface-to-volume value. 
This phenomenon is worth being noted, since there are few reports focusing on promoting the growth 
of these nanopricks. Among the three parameters discussed in this article, low temperature is the only 
one which could provide an obvious furtherance to the growth of the surface nanopricks. When 
reaction temperature was above 90 °C, the number and size of nanopricks would decline sharply. 
There was no more obvious presence of surface nanopricks when the temperature was at 150 °C. 

Figure 1. The photographs of nickel nanowires (NiNWs) (a) dispersed in ethanol (b) attracted by an
external magnet, (c) X-ray diffraction (XRD) patterns, (d) low and (e) high magnification scanning
electron microscopy (SEM) images of NiNWs; and the transmission electron microscopy (TEM) images
of (f) the body and (g) the end of a NiNW.

2.1. Reaction Temperature Control

We found that the reaction temperature plays an important role in determining the size and
morphology of NiNWs. Experiments were conducted with reaction temperature at 60, 70, 80, 90, 100,
110, 120, 125, 135, and 150 ˝C. SEM images indicate a continuous change of NiNW appearance with the
reaction temperature (Figure 2a–c). As the temperature increased, the reaction increased in efficiency.
For instance, it took about 100 min to form floating solid product at 70 ˝C, while only 5 min required to
complete NiNW formation at 150 ˝C. The changes of average length, average width, and LWR versus
the temperature were given in line charts (Figure 2d–f). The largest shape anisotropy belonged to the
NWs synthesized at reaction temperature of 100 ˝C, and it dropped sharply when the temperature
reached above 125 ˝C. Lower reaction temperatures lead to larger dimensions of NiNWs and palpable
growth of the surface nanopricks. Although products synthesized at lower temperature should have
larger dimensions than the ones synthesized at higher temperature, they usually had many NWs with
short length or fragments which diminishing the average values. It should be noted that there was an
obvious decrease of yield when reaction temperature was below 90 ˝C, and eventually no product
was obtained at 60 ˝C. The size and number of nanopricks on the NiNW surface can sufficiently
influence the surface-to-volume value. This phenomenon is worth being noted, since there are few
reports focusing on promoting the growth of these nanopricks. Among the three parameters discussed
in this article, low temperature is the only one which could provide an obvious furtherance to the
growth of the surface nanopricks. When reaction temperature was above 90 ˝C, the number and size
of nanopricks would decline sharply. There was no more obvious presence of surface nanopricks when
the temperature was at 150 ˝C.



Nanomaterials 2016, 6, 19 4 of 10
Nanomaterials 2016, 6, 19 4 of 9 

 
Figure 2. SEM images with same magnification of NiNWs synthesized at (a) 70 °C, (b) 110 °C, and (c) 
150 °C. The change of (d) length, (e) width, and (f) length-to-width ratio (LWR) of NiNWs with 
temperature. 
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For the investigation of time, NiNWs were prepared by conducting the experiment with a 
reaction time length of 1 min, 3 min, 10 min, 30 min, and 90 min, separately. According to the SEM 
images (Figure 3a–c), it is notable that the reaction time had a strong influence on the size of the 
product, yet it might not have significant effect on the formation of surface nanopricks on NiNW 
after 1 min. The length, as well as width, of NiNWs would increase quickly in the first 10 min, with a 
sudden change of the shape anisotropy (Figure 3d–f). Then the growth would slow down, and there 
was finally no distinct growth 30 min after the reaction started. This result is consistent with the time 
taken for the solid product forming and floating to the solution surface of about 30 min in a typical 
synthesis procedure. The sensitivity to reaction time in the first 10 min gave an advantage for 
controlling the NiNW dimensions, as well as the anisotropy, by simply controlling the time length. 
While small-sized NiNWs could be obtained with a short time, the low yield of the product would 
be a significant drawback in this case. The independency of NiNW size and morphology from the 
time after 30 min would provide a huge convenience in industrial fabrication due to a less harsh 
requirement for reaction time control. Meanwhile, this group of samples can be used to study the 
NiNW growth mechanism, which will be discussed at Section 2.5 in detailed. 
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with temperature.

2.2. Reaction Time Length Control

For the investigation of time, NiNWs were prepared by conducting the experiment with a reaction
time length of 1 min, 3 min, 10 min, 30 min, and 90 min, separately. According to the SEM images
(Figure 3a–c), it is notable that the reaction time had a strong influence on the size of the product,
yet it might not have significant effect on the formation of surface nanopricks on NiNW after 1 min.
The length, as well as width, of NiNWs would increase quickly in the first 10 min, with a sudden
change of the shape anisotropy (Figure 3d–f). Then the growth would slow down, and there was
finally no distinct growth 30 min after the reaction started. This result is consistent with the time taken
for the solid product forming and floating to the solution surface of about 30 min in a typical synthesis
procedure. The sensitivity to reaction time in the first 10 min gave an advantage for controlling the
NiNW dimensions, as well as the anisotropy, by simply controlling the time length. While small-sized
NiNWs could be obtained with a short time, the low yield of the product would be a significant
drawback in this case. The independency of NiNW size and morphology from the time after 30 min
would provide a huge convenience in industrial fabrication due to a less harsh requirement for reaction
time control. Meanwhile, this group of samples can be used to study the NiNW growth mechanism,
which will be discussed at Section 2.5 in detailed.
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2.3. Surfactant Concentration Control

PVP served as regular surfactant in NiNW synthesis [2,40]. To investigate the influence from
surfactant concentration, NiNWs were synthesized with PVP concentrations of 0.03, 0.5, 1, 2, 5,
and 10 w/v % in EG, respectively (Figure 4a–c). The typical synthesized product is considered as
having no PVP condition in this part of discussion. Changes of dimensions, as well as LWR versus
PVP concentration change, were present as line charts (Figure 4d–f). Although PVP concentration
showed no significant impact on the yield and reaction time length, there was no product when PVP
concentrations were higher than 2 w/v %. We noted that PVP had a strong control on the diameter
of NWs, which was consistent with the stabilization function of PVP on the surface of NWs. When
the PVP concentration was 2 w/v %, the average width was only 90 ˘ 20 nm, which was the smallest
dimension among all the obtained products and is the only average value less than 100 nm. PVP
also served a role in reducing the shape anisotropy of NiNWs and restrained the growth of surface
nanopricks. For instance, NiNWs with LWR of 74 ˘ 34 had no nanopricks on the surface (Figure S1).
This smooth surface could not be obtained by varying temperature or reaction time, yet it was possibly
caused by the strength of interaction between PVP and the NiNW surface.
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(Figure S1). In addition, the noticeable carbon peak and silicon peak could be attributed to the 
carbon tape and underlying silicon wafer, respectively. For samples synthesized without PVP, 
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spectra, the amount of oxygen was undetectable (Figure 5). This indicated the high purity of our 
products and we believed that the small amount of NiO was located on the NiNWs surface to 
prevent further oxidation. In fact, the typicaly synthesized product showed superior ambient 
storage stability. As shown in Figure S2, the high purity remained even after one month in air at 
room temperature, and only a small amount of oxygen was detected after five months. NiNW also 
kept this high purity even after a treatment at 70 °C for 30 h. Consequently, these pure NiNWs could 
be claimed to be inert under ambient condition with normal temperature and pressure. 

Another remarkable point is the enhanced magnetic property. The saturation magnetization (Ms) 
of bulk nickel is 55 emu/g, remnant magnetism (Mr) is 2.7 emu/g, and coercivity (Hc) is 100 Oe at room 
temperature [41]. In this system, the typically fabricated product has Ms 50.8 emu/g, Mr 19.9 emu/g, 

Figure 4. SEM images with same magnification of NiNWs synthesized with poly(vinylpyrrolidone)
(PVP) concentration of (a) 0.03 w/v %, (b) 0.5 w/v %, and (c) 2 w/v %. The change of (d) length,
(e) width, and (f) LWR of NiNWs with PVP concentration.

2.4. Purity and Magnetic Properties

One remarkable property of our product is the high purity which is expected to be stable over
the long-term under ambient storage conditions. NiNWs synthesized with PVP addition had oxygen
and nitrogen peaks in the EDS spectra, but these peaks might come from the PVP remaining on NWs
(Figure S1). In addition, the noticeable carbon peak and silicon peak could be attributed to the carbon
tape and underlying silicon wafer, respectively. For samples synthesized without PVP, although a
small peak could be found at the characteristic position of oxygen K-series in the EDS spectra, the
amount of oxygen was undetectable (Figure 5). This indicated the high purity of our products and we
believed that the small amount of NiO was located on the NiNWs surface to prevent further oxidation.
In fact, the typicaly synthesized product showed superior ambient storage stability. As shown in
Figure S2, the high purity remained even after one month in air at room temperature, and only a
small amount of oxygen was detected after five months. NiNW also kept this high purity even after
a treatment at 70 ˝C for 30 h. Consequently, these pure NiNWs could be claimed to be inert under
ambient condition with normal temperature and pressure.
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Another remarkable point is the enhanced magnetic property. The saturation magnetization
(Ms) of bulk nickel is 55 emu/g, remnant magnetism (Mr) is 2.7 emu/g, and coercivity (Hc) is 100 Oe
at room temperature [41]. In this system, the typically fabricated product has Ms 50.8 emu/g, Mr

19.9 emu/g, and Hc 167.7 Oe at room temperature (Figure 5). Compared to the bulk Ni, our product
showed enhanced Mr and Hc properties, which would be consistent of its shape anisotropy. The bulk
Ni should generally have a higher Ms than NiNW counterparts, because the total magnetic moment
of magnetic nanostructures has been reduced by the surface spin disorder [37]. The larger size the
product has, the closer magnetic properties approaching to the bulk material (Table S1). The The Ms

value was proportional to the NiNW diameter, while the Hc showed reverse proportional to that. This
result was consistent to the published report [17].
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synthesized with typical process.

2.5. Reaction Mechanism

A plausible scheme of the NiNW growth mechanism is that a soluble complex of Ni ions and
N2H4 would be formed when N2H4¨ H2O was added into the solution [27,42]. N2H4 served as a
bridging bidentate ligand towards the metal center besides acting as the reduction agent [43], which
caused the solution become blue. The solution changed to turbid in a very short time because this
complex would be quickly reduced into a short chain-like nanostructure [37]. With Ostwald ripening
and further growth, large shape anisotropy NiNWs could be obtained. The morphology and size
change of time-controlled products might be considered as supporting evidence to the above statement.
A supplementary hypothesis is suggested to the present scheme. Since Ni nanoparticles existed in
the final product, the growth of such nanoparticles should be considered as a competitive process to
the NiNW formation (Figure 6). Although other reports [30,37,38] believe that single Ni nuclei would
be formed before the formation of short nanochains, the exact evidence for this stage could not be
observed by our sampling (Figure S3).
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Figure 6. The illustration of NiNW growth mechanism. The inset is the detailed illustration of Step 2
to 4.

3. Experimental Section

Chemicals. Nickel (II) chloride hexahydrate (NiCl2¨ 6H2O; 99.9%), ethylene glycol (EG; 99.8%),
hydrazine monohydrate (N2H4¨ H2O; 98%), and poly(vinylpyrrolidone) (PVP; Mw, 40,000) were
purchased from Sigma-Aldrich (St Louis, MO, USA). Ultrapure deionized water (DI; millipore water
systems) with resistivity 18.2 MΩ¨ cm´1 was used throughout the work. All chemicals were used
without further purification.

Process. In a typical procedure, 75 µL 1 M aqueous NiCl2 solution and 15 mL EG were mixed
and heated to 100 ˝C, and then 0.5 mL N2H4¨ H2O was added in, dropwise. The whole mixture
was maintained at this temperature for about 30 min until the dark gray product was formed and
eventually floated at the solution surface. The dark gray product was then washed with DI water and
anhydrous ethanol several times by magnetic decantation, and then dispersed in ethanol for further
characterization. For PVP-controlled conditions, specific concentration of PVP in EG solution was used
instead of pure EG as the solvent in this system.

Characterization. The XRD pattern was recorded on PANalytical X’pert Pro diffractometer (Cukα1

radiation, λ = 1.540562 Å, 40 kV, 40 mA, Almelo, Netherlands). SEM and TEM images were obtained
with JEOL JEM6390 SEM and JEOL JEM100CXII TEM (Tokyo, Japan), correspondingly. EDS patterns
were obtained with the capabilities (Bruker, XFlash Detector 4010, Billerica, MA, USA) equipped on
SEM. VSM measurements were conducted by LakeShore 7300 VSM (Westerville, OH, USA) at room
temperature with a maximum magnetic field of 5 kOe.

4. Conclusions

In summary, a facile size and morphology-tunable method has been exploited to synthesize
pure NiNWs with high stability under ambient storage conditions. The product was observed to
be crystallized in the fcc phase and have large shape anisotropy over 100. NiNWs also exhibited
an enhanced magnetic properties over bulk Ni due to the large shape anisotropy. The reaction
parameters controlling the size and morphology, such as the reaction temperature, time, and surfactant
concentration, were investigated in detail. In addition, a supplemental hypothesis was suggested to the
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present NiNW growth mechanism. It is expected that this method and the complementary results will
be serviceable for further development on industrial scale-up fabrication and other NiNW applications.
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