Supporting Information

Figure S1. Low-angle X-ray diffraction (XRD) patterns of the mesoporous Santa Barbara Amorphous-15 (SBA-15) material. The angular position of the (100) Bragg diffraction is consistent with a hexagonal *p6mm* lattice parameter (a_0) of ~11.6 nm.

Figure S2. Nitrogen adsorption–desorption isotherms at 77 K and the corresponding nonlocal density functional theory (NLDFT) pore size distribution (inset) of the mesoporous SBA-15 material. The SBA-15 shows a specific surface area of 670 m²·g⁻¹, a total pore volume of 0.95 cm³·g⁻¹ and a narrow pore size distribution with a pore width of 9.8 nm.

Figure S3. Typical scanning electron microscopy (SEM) images of mesoporous (a) *mp*-CeO₂ and (b) CeO(38)/CeO₂ materials.

Figure S4. XRD pattern of reused CuO(38)/CeO₂ catalyst.

Figure S5. Nitrogen adsorption–desorption isotherms at 77 K of reused CuO(38)/CeO₂ catalyst. Analysis of the adsorption data with the Brunauer–Emmett–Teller (BET) method gives a surface area of 131 m²·g⁻¹ and a total pore volume of 0.19 cm³·g⁻¹. Inset: the corresponding NLDFT pore size distribution, indicating a pore size of ~4.8 nm.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).