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Abstract: The use of nanomaterials for the treatment of solid tumours is receiving 

increasing attention by the scientific community. Among them, mesoporous silica 

nanoparticles (MSNs) exhibit unique features that make them suitable nanocarriers to host, 

transport and protect drug molecules until the target is reached. It is possible to incorporate 

different targeting ligands to the outermost surface of MSNs to selectively drive the drugs 

to the tumour tissues. To prevent the premature release of the cargo entrapped in the 

mesopores, it is feasible to cap the pore entrances using stimuli-responsive nanogates. 

Therefore, upon exposure to internal (pH, enzymes, glutathione, etc.) or external 

(temperature, light, magnetic field, etc.) stimuli, the pore opening takes place and the release 

of the entrapped cargo occurs. These smart MSNs are capable of selectively reaching and 

accumulating at the target tissue and releasing the entrapped drug in a specific and 

controlled fashion, constituting a promising alternative to conventional chemotherapy, which 

is typically associated with undesired side effects. In this review, we overview the recent 

advances reported by the scientific community in developing MSNs for antitumor therapy. 

We highlight the possibility to design multifunctional nanosystems using different 

therapeutic approaches aimed at increasing the efficacy of the antitumor treatment. 

Keywords: mesoporous silica nanoparticles; cancer treatment; passive targeting; active 

targeting; stimuli-responsive drug delivery 

 

OPEN ACCESS



Nanomaterials 2015, 5 1907 

 

1. Introduction 

In recent times, nanomaterials have been used more and more in healthcare, electronics, cosmetics 

and other areas [1–3]. Because of their small size, they have physical and chemical properties different 

from those of bulk materials and open up a new range of solutions for different problems, especially in 

nanomedicine [4–10]. The overall evolution of nanomaterials in medicine has provided more than  

250 nanomedicine products that are approved or are in the course of different stages of clinical study [11]. 

Target-specific drug therapies and methods for early diagnosis of pathologies are the priority research 

areas in which nanotechnology plays a vital role. For instance, the development of nanotechnology has 

led to the development of powerful new nanodevices for early diagnosis, prediction, prevention and 

personalized treatment of cancer tumors [12–15]. According to the World Health Organization, cancer 

accounted for 8.2 million deaths in 2012, being 21.7 million the number of new cancer cases expected 

to be diagnosed, while 13 million cancer deaths are predicted in 2030 [16]. These figures make cancer 

one of the leading causes of death worldwide. As far as cancer therapeutics is concerned, the most 

common cancer treatments are restricted to chemotherapy, radiation and surgery, involving a lot of 

side effects caused by a non-specific tissue distribution of anticancer agents, insufficient drug 

concentrations at the tumor, unmanageable toxicity, limited possibility to get information about 

therapeutic responses and the development of multiple drug resistance due to the repeated exposition to 

chemotherapeutic agents inefficient drug concentrations reaching the tumor site, intolerable cytotoxicity, 

limited ability to monitor therapeutic responses and development of multiple drug resistance acquired 

upon repeated chemotherapeutic cycles [17–19]. The use of nanoparticles (NPs) is a promising alternative 

as they can hold, carry, protect and deliver therapeutic compounds specifically in the diseased tissue. NPs 

allow more effective and patient friendly treatment regimens by reducing drug concentration and dosing 

frequency, by offering easier administrations and by improving safety [20–22] (Figure 1). 

 

Figure 1. Schematic depiction of drug administration for cancer therapy: systemic treatments 

versus targeted therapies using nanomaterials. 

Inorganic NPs show remarkable advantages compared to the organic ones, including high thermal, 

chemical and mechanical stability under physiological conditions and good biocompatibility. 
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However, the main reason that makes NPs ideal candidates for the treatment of cancer is their ability to 

target and selectively accumulate in tumor tissue and release their cargo in a controlled manner once 

there. Among inorganic nanomaterials, mesoporous silica NPs (MSNs) are one of the most promising 

drug carriers, and they have attracted increasing attention in fields such as drug delivery, diagnostic 

and medical imaging and engineering due their unique properties (Figure 2) including: large surface 

area (~1000 m2·g−1 for MCM-41 type particles) and large pore volumes (~1 cm3·g−1) providing high 

loading capacity, high degree of tunability regarding size, morphology and pore diameter, biocompatibility, 

biodistribution, biodegradation and excretion [23–40]. Another added advantage is the ease of synthesis 

showing a great variety of morphologies and surface functionalities using different strategies which have been 

reviewed elsewhere [41–46]. 

 

Figure 2. Left: Main characteristics of MSNs. Right: transmission electron microscopy 

(TEM) images of 2D-hexagonal MCM-41 type mesoporous silica nanoparticles (MSNs) taken 

with the electron beam parallel (up) and perpendicular (down) to the mesoporous channels. 

The synthesis of MSNs can be carried out by using two different approaches. The first one is the  

so-called “modified Stöber method” [47], which consists in the condensation of silica under basic 

medium in the presence of cationic surfactants as structure directing agents. The second strategy is the  

aerosol-assisted synthesis, which allows using not only cationic but also anionic and non-ionic surfactants 

to obtain MSNs [48–52]. The surfactant removal usually leads to materials with cylindrical mesopores 

arranged in a two-dimensional hexagonal fashion, characteristic of MCM-41 type materials [53]. 

The resulting MSNs have an internal surface, i.e., the inner part of the mesopores, and an external 

surface, i.e., the external face of the NPs. This fact allows the selective functionalization of MSNs with 

different functional groups. Normally, the functionalization of MSNs is achieved either by  

co-condensation or by post-synthesis methods using organoalkoxysilanes, ((RO)3SiR’) [44,54]. This 

strategy allows incorporating different functionalities in MSNs for different purposes, such as 

promoting drug adsorption or covalently attaching fluorophores [23]. Usually, the fluorophore is  

pre-reacted with an aminosilane that is subsequently used in the cocondensation synthesis, yielding 

inherently fluorescent MSNs for cell imaging [55–57]. Indeed, when aimed at targeted smart drug 

delivery, additional moieties such as targeting agents, hydrophylic polymers, stimuli-responsive 

nanogates, etc. can be incorporated into MSNs to provide them with multi-functional properties. 
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In this manuscript, the recent developments on MSNs as stimuli-responsive drug delivery systems 

able to release therapeutic compounds once the target diseased tissues and cells are reached  

are overviewed. 

2. Selective Targeting 

Normal cells rely on the integrity of regulatory circuits that control cell proliferation and 

maintenance. The regulatory circuits are disrupted in cancer cells, and the type and behavior of the 

cancer cell vary depending on the type of damage caused to the regulatory circuits [58]. The abnormal 

behavior of cancer cells results in an excessive and rapid growth of solid tumors. This particularity can 

be exploited against tumor cells in attempts to treat the disease, using either passive targeting or active 

targeting, or a combination of both [35,36,59–62]. The use of targeted MSNs can also solve the lack of 

selectivity of some drugs since they can host, transport and guide the therapeutic agents selectively to 

the tumor. This strategy permits decreasing the high doses of cytotoxic drugs, which are needed in 

conventional chemotherapy, increasing therapeutic efficacy and diminishing undesired side effects. 

2.1. Passive Targeting 

It is known that solid tumors undergo an excessive and rapid growth which is associated with a high 

demand of nutrients and oxygen supply. As a consequence, some of them acquire the ability to 

promote the formation of new blood vessels from the surrounding capillaries; this process is termed as 

angiogenesis. However, this process is so fast and uncontrolled that the new vessels are irregular, 

exhibiting discontinuous epithelium and presenting fenestrations that can reach sizes in the 200–2000 nm 

range. When blood components reach tumor vessels, they extravasate throughout the fenestrations to 

the tumor interstitium. Besides, unlike normal tissues, in solid tumors the lymphatic drainage is 

deficient. Therefore, whereas molecules smaller than 4 nm can diffuse back to the bloodstream, the 

diffusion of NPs is impeded by their hydrodynamic radii and they accumulate in the tumor 

interstitium. This phenomenon is called “enhanced permeability and retention (EPR) effect” and was 

discovered by Matsumura and Maeda in 1986 when they realized that macromolecules greater than  

50 kDa could preferentially distribute to the tumor interstitium and remain there for extended time 

periods [63] (Figure 3). 

Nonetheless, accumulation of NPs in tumors will only take place if they avoid clearance by mechanisms 

such as renal clearance and uptake by the reticuloendothelial system (RES). Particle circulation time 

and the ability to overcome biological barriers are essential to attain successful passive targeting. 

Focusing on MSNs, three main features of these NPs affect these phenomena: (i) particle size; (ii) 

particle shape; and (iii) surface properties. 

(i) Particle size is considered one of the most important features of NPs. MSNs must be at least  

50 nm in diameter to keep their inherent mesoporosity and avoid renal clearance, but have to 

be smaller than 300 nm to diffuse through the tumor interstitium in sufficient amounts to 

achieve therapeutic effect [11,64]. 

(ii) Particle shape has gained considerable attention since it was found that non-spherical NPs 

could reduce phagocytosis by macrophages, thus exhibiting longer in vivo circulation  
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times [65,66]. However, it is difficult to consider shape as a single variable because the 

fabrication techniques used to produce NPs with different shapes using biocompatible 

materials are limited [67]. Thus, it is difficult to exclude the relationship of various chemical, 

electrostatic and morphological factors by control experiments. In fact, there are only few 

reports regarding the effect of particle shape on in vitro and in vivo behavior, [68,69] even 

some of them with contradicting results. All these aspects make the influence of the shape of 

MSNs on cell internalization and cellular fate an unsolved question. 

(iii) Surface properties are considered, together with the most important aspects that influence the 

EPR effect as it is the nature of the surface the first aspect that the MSNs “show” to the cells. 

Surface modification is one of the fundamental approaches used to increase the time MSNs 

remain in circulation to ensure tumor accumulation. The aim is to make MSNs “invisible” for 

the RES avoiding a rapid clearance. Surface functionalization with hydrophilic polymers is 

one of the most used strategies, especially with PEG (polyethylene glycol) and their 

derivatives (Figure 3) [70–73]. PEG not only reduces RES uptake but also improves the 

stability of the MSNs in biological fluids [71]. 

 

Figure 3. Schematic illustration of enhanced permeation and retention (EPR) effect. 

2.2. Active Targeting 

As previously stated, solid tumor experience an uncontrolled rapid growth that requires increased 

nutrient supply, which makes diseased tissues and cells overexpressing different surface receptors. Usually, 

solid tumors are composed by a heterogeneous mixture of both cancer and healthy cells, and 

developing nanocarriers able to discriminate between them becomes an essential milestone. Thus, the 

basis of active targeting relies on “decorating” the periphery of the nanocarriers with targeting ligands 

which are specifically selected for a given receptor overexpressed in the surface of cancer cells or 

vasculature and poorly expressed in healthy cells or vessels. 
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The different molecular targets for active targeting of cancer by MSNs are schematically displayed 

in Figure 4. These molecular targets can be divided into two main groups: receptors overexpressed in 

the surface of cancer cells; and receptors overexpressed in the blood vessels supplying tumor tissue. 

Table 1 summarizes some of the targeting ligands that have been conjugated to MSNs to promote 

specific and selective recognition by tumor tissues. Different conjugation strategies have been developed 

to graft targeting ligands to MSNs, such as carbodiimide-mediated COOH/NH2 coupling, maleimide/SH 

coupling, etc. For further information about these issues, the reader is encouraged to consult references 

included in Table 1. 

 

Figure 4. Molecular targets for active targeting of cancer by mesoporous silica nanoparticles: 

(i) tumor cell membrane receptors, such as transferrin receptors (TfR), folic acid receptors  

(FR-α) and lectin receptors; (ii) tumor vasculature receptors, such metalloproteinases, as  

αβ-integrins and vascular endothelial growth factor receptor (VEGFR). Molecular targets for 

active targeting of cancer by mesoporous silica nanoparticles. 

Table 1. Active targeting strategies for mesoporous silica nanoparticles. 

Targeting Cell Membrane Receptors 

Receptor a Targeting Ligand b Conjugation Strategy c Target Cell Line d Ref. 

TfR Tf CS-1 PANC-1, BT-549 [74] 

TfR Tf CS-2 HeLa [75] 

TfR Tf CS-2 HT1080 [76] 

EGFR EGF CS-3 HuH-7 [77] 

FAR (FR-α) FA CS-2 
Hela, PANC, U2Os, MDA-MB- 

231, SK-BR-3, MiaPaca-2 
[78–85]

FR-α Methotrexate CS-2 HeLa [86] 

Sigma receptor Anisamide CS-2 ASPC-1 [85] 

Importing α and β 

receptors 
TAT peptides CS-2 Hela; MCF-7/ADR [87–89]

IL-13Rα2 IL-13 peptide CS-3 U251 [90] 
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Table 1. Cont. 

Targeting Tumor Vasculature Receptors 

Receptor Targeting Ligand Conjugation Strategy Target Cell Line Ref. 

HER2 Anti-herceptin CS-2 SK-BR3 [91] 

HER2/neu Anti-HER2/neu CS-3 BT474 [92] 

ErbB2 Anti-ErbB2 CS-4 MCF-7 [93] 

Mesothelin Anti-ME1 CS-2 MM [94] 

CD105/endoglin Anti-TRC105 CS-3 HUVECs [95] 

NET MABG CS-2 NB1691-luc [96] 

ανβ3-integrins c(RGDyK) CS-3 U87-MG [97] 

ανβ3-integrins cRGD CS-5 MDA-MB 435 [74] 

ανβ3-integrins K7RGD, c-RGDFK CS-2 HeLa [98] 

ανβ3-integrins K8(RGD)2 CS-4 U87-MG [99] 

ανβ3-integrins N3GPLGRGRGDK-Ad CS-6 SCC-7, HT-29 [100] 

ανβ3-integrins N3RGDFFFFC CS-5 U87-MG [101] 

ανβ3-integrins Thiolated-RGD CS-3 A375, HepG2, MCF-7, Neuro-2a [102] 

(VCAM-1)R Anti-(VCAM-1) CS-2 HUVEC-CS [103] 

VEGFR VEGF CS-3 U87-MG [104] 
a TfR: Transferrin receptor; EGFR: Epidermal growth factor receptor; FAR (FR-α): Folic acid receptor; IL-13Rα2: 

Interleukin-13 receptor subunit alpha-2; HER2: epidermal growth factor receptor; ErbB2: Receptor tyrosine-protein 

kinase 2; NET: Norepinephrine transporter; (VCAM-1)R: vascular cell adhesion molecule 1 receptor; VEGFR: Vascular 

endothelial growth factor receptor; b Tf: Transferrin; FA: Folic acid; EGFR: Epidermal growth factor; TAT: 

Transactivator of transcription; IL-13: Interleukin-13; MABG: metaaminobenzyl guanidine (meta-iodobenzylguanidine 

analogue); c(RGD): Cyclic RGD (Arg-Gly-Asp); c(RGDyK): Cyclo (Arg-Gly-Asp-D-Phe-Lys); K7RGD: linear RGD 

peptide sequence with 7 consecutive lysine residues; K8(RGD)2: cationic peptide containing 2 RGD sequences; VCAM-1: 

vascular cell adhesion molecule 1; VEGFR: Vascular endothelial growth factor; c CS: Conjugation Strategy; CS-1: 

Epoxy/NH2 coupling; CS-2: COOH/NH2 carbodiimide-mediated coupling; CS-3: Maleimide/SH-mediated coupling;  

CS-4: Electrostatic interactions; CS-5: Disulfide exchange and S-S bond formation; CS-6: Ad/b-CD host-guest 

interaction; d PANC-1: Human pancreatic carcinoma, epithelial-like cell line; BT-549: Human breast carcinoma cell line; 

HeLa: Human epithelial cells from a fatal cervical carcinoma; HT1080: Fibrosarcoma cell line; HuH-7: Human hepatoma 

cell line; U20S: Human osteosarcoma cell line; MDA-MB 231 and 435: Human breast carcinoma cell lines; SK-BR-3: 

Human breast adenocarcinoma cell line; MiaPaca-2: Human pancreatic carcinoma cell line; ASPC-1: Human pancreas 

adenocarcinoma cell line; MCF-7/ADR: (ADR)-selected human breast cancer cell line; U251: glioma cell line; BT474: 

Human breast cancer cell line; MM: Multiple myeloma cell line; HUVEC: Human umbilical vein endothelial cell line; 

U87-MG: Human primary glioblastoma cell line; SCC-7: Squamous cell carcinoma; HT-29: Human intestinal epithelial 

cells; A375: Human amelanotic melanoma cell line; HepG2: Human hepatoblastoma-derived cell line; Neuro-2a: Mouse 

neuroblastoma cell line; HUVEC: Human umbilical vein endothelial cell line. 

The first strategy to provide NPs with active targeting ability consists in decorating their outermost 

surface with certain ligands (antibodies, proteins, peptides, aptamers, saccharides or small molecules 

such as folic acid) able to be specifically recognized by surface receptors overexpressed in tumor cells. 

Thus, these targeted-MSNs could be specifically internalized by tumor cells by receptor-mediated 

endocytosis without affecting neighboring healthy cells (Table 1). For further information about the 

targeting receptor-mediated endocytotic pathways with NPs, readers are encouraged to read an 

interesting recent review of this topic [105]. This strategy is complementary to passive targeting via 
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EPR effect to improve the efficiency of cancer therapy and decrease the side effects of conventional 

chemotherapy. Some common tumor cell membrane receptors include: 

- Transferrin receptor (TfR): Tf is a membrane glycoprotein that operates together with its 

receptor, TfR, to assist the uptake of iron by the cell. The TfR may be overexpressed by up to 

100-fold on tumor cells, making it an attractive alternative for targeted delivery of drugs by 

grafting Tf to MSNs. 

- Folic acid receptor (FAR): FAR is one of the most widely studied molecules for targeting 

MSNs to cancer cells, since FAR is up-regulated in several types of human cancers, including 

ovarian, endometrial, colorectal, breast, lung, renal carcinoma, brain metastases derived from 

epithelial cancer and neuroendocrine carcinoma [106]. 

- Epidermal growth factor receptor (EGFR): is a receptor tyrosine kinase that belongs to the 

ErbB family, which is extremely activated in many epithelial tumors. The receptor’s aberrant 

abnormal activation found in cancer can obey different mechanisms, including receptor 

overexpression, mutation, ligand-dependent receptor dimerization, and ligand-independent 

activation is a receptor tyrosine kinase of the ErbB family that is abnormally activated in 

many epithelial tumors. Several mechanisms lead to the receptor’s aberrant activation that is 

observed in cancer, including receptor overexpression, mutation, ligand-dependent receptor 

dimerization, and ligand-independent activation. Thus, targeting of NPs to EGFR by grafting 

EGF or anti-EGFR agents is a good alternative for cancer treatment [107]. 

- Antigens: Abnormal expression of certain antigens in the surface of tumor cells is the fundamental 

of antibody (Ab)-based cancer therapies [108]. The presence of cell surface antigens 

expressed by human cancers has provided a wide range of targets that are either 

overexpressed, mutated or selectively expressed in comparison  definition of cell surface 

antigens that are expressed by human cancers has revealed a broad array of targets that are 

overexpressed, mutated or selectively expressed compared with normal tissues. This strategy 

can be used to target NPs to cancer cells. Thus, different Abs have been grafted to MSNs to 

design effective tumor-targeted nanodevices. 

The second approach consists in targeting the blood vessels that irrigate solid tumor. During the 

formation of new blood vessels, tumor mass secrets different growth factors that promote angiogenic 

processes. The direct targeting of MSNs to the tumor vasculature disturbs nutrients and oxygen supply 

to the tumor mass and triggers its destruction. This strategy presents several advantages: 

(i) Extravasation of NPs from the blood vessels is not required. 

(ii) Tumor blood vessels usually overexpress certain receptors which are easily accessible to NPs. 

(iii) Endothelial cells that compose the tumor vessels are less susceptible to suffer mutations than 

tumor cells, which reduces the risk of multidrug resistance. This fact obeys the more stable 

environment of endothelial cells compared to that of tumor cells housed inside the solid 

tumor mass, which are exposed to hard conditions (low pH values, low O2 pressure, etc.). 

(iv) Endothelial cell markers are common in different tumors. 

Some angiogenic markers that can be used as molecular targets include: 
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- Vascular endothelial growth factor receptor (VEGFR): VEGF is a signal protein produced by 

cells to stimulate vasculogenesis and angiogenesis. The endothelial cells surrounding tumor 

cells overexpress VEGFRs. Thus, it is possible to target NPs to tumor blood vessels by 

grafting VEGF. 

- Vascular cell adhesion molecule-1 receptor ((VCAM-1)R): VCAM is a protein that mediates 

cell-to-cell adhesion. (VCAM-1)Rs are only expressed on the surface of tumor blood vessels 

and inflammation. The attachment of Ab specifically designed to bind to this molecule to NPs 

could be a good targeting strategy. 

- Matrix metalloproteinases (MMPs): are enzymes responsible of remodeling the extracellular 

matrix. These processes are necessary for a vast and varied array of physiological events 

(wound repair, organismal growth and development, and mediation of immune responses). 

MMPs degrade all kinds of extracellular matrix (ECM) proteins, playing a key role in 

angiogenesis and metastasis. Since MMPs are overexpressed in the extracellular environment 

of certain kinds of tumors, they can be used as a kind of tumor localization signal in cancer 

therapy [109,110]. Thus, some Ab able to selectively bind MMPs have been conjugated to 

different NPs, especially antibodies that recognize the membrane type-1 metallo-proteinase 

which is present on endothelial tumor cells of a large number of malignancies. 

- αβ-integrins: are endothelial cell receptors for ECM proteins which are highly overexpressed 

in neovascular endothelial tumor cells but is scarcely present in healthy cells. Oligopeptides 

harboring the RGD sequence (Arg-Gly-Asp) bind selectively to this receptor. 

3. Stimuli-Responsive Mesoporous Silica Nanoparticles 

Much research effort is being dedicated to develop novel stimuli-responsive nanomaterials able to 

release antitumor drugs once in the target tissue. Among nanomaterials, MSNs are of foremost interest 

due to their unique features and capability to are particularly interesting because of their unique 

characteristics and abilities to efficiently entrap, protect and specifically transport cargo molecules to 

tumor tissues [35–37,111]. In these smart nanosystems, the drug is enclosed within the mesopores and 

its output is blocked by using capping agents or gatekeepers that prevent any premature cargo 

departure. Drug release takes place once the system has been exposed to a given stimulus, which 

provokes the gatekeepers removal and triggers the release of the entrapped cargo. The release is 

triggered only upon exposure to stimuli, which induce the removal of gatekeepers and then the release 

of the entrapped drug molecules (Figure 5). 

 

Figure 5. Schematic representation of the performance of stimuli-responsive MSNs. 
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Table 2 summarizes representative stimuli-responsive drug delivery MSNs, which have been 

classified in two great groups depending on the stimulus that acts as release trigger, namely internal 

and external stimuli. The responsive linker and the capping agent are also indicated. In this section, we 

overview the recent advances in the development stimuli-responsive MSNs, discussing their 

advantages and constraints considering their potential clinical application. 

Table 2. Stimuli-responsive strategies for smart drug delivery mesoporous silica nanoparticles. 

 Stimuli Responsive Linker Capping Agent Ref. 

E
xt

er
na

l 

Temperature Octadecyl (C18) chains Paraffins [112]

Temperature PNIPAm PNIPAm  [113]

Temperature DNA strands Biotin [114]

Temperature Coiled-coil peptide motifs Coiled-coil peptide motifs [115]

Electric field 4(3-cyanophenyl)butylene dipolar molecule - [116]

Magnetic field Hybridization of 2 ssDNA γ-Fe2O3 NPs [117]

Magnetic field Alkylamonium chains (NH3
+–(CH2)–NH2

+–R) CB[6] [118]

Magnetic field PEI/PNIPAM polymer PEI/PNIPAM chains + catalase [119]

Magnetic field Azo bonds (–N=N–) PEG [120]

Light 
4-[4-(1-(Fmoc)methyl)-2-methoxy-5-

nitrophenoxy]butanoic acid photolinker  

Protein shell (avidin- 

estreptavidin-biotin-transferrin) 
[76] 

Light DNA aptamer  DNA aptamer  [121]

Light Azobenzene/coumarin dimer Coumarin dimer [122]

Light Azobenzene derivatives β-CDs [123]

In
te

rn
al

 

pH Acetal linker Au NPs [124]

pH Boronate ester Fe3O4 NPs [125]

pH Ferrocenyl moieties β-CD-modified CeO2 NPs [126]

pH PAH-PSS PEM PAH-PSS PEM  [127]

pH Aromatic amines  CDs [128]

pH Benzoic-imine bonds Polypseudorotaxanes [129]

pH CaP soluble at acid pH CaP coating [130]

Redox potential –S–S– ssDNA [131]

Redox potential –S–S– PEG [132]

Redox potential –S–S– CdS NPs [133]

Redox potential –S–S– PPI dendrimer [134]

Enzymes MMP-degradable gelatin Gelatin coating  

Enzymes β-galactosidase-cleavable oligosaccharide β-galacto-oligosaccharide [135]

Enzymes 
MMP9-sensitive peptide sequence 

(RSWMGLP) 
Avidin [136]

Enzymes 
Protease-sensitive peptide sequences 

(CGPQGIWGQGCR) 
PNIPAm-PEGDA shell [137]

Enzymes α-amylase and lipase cleavable stalks CDs [138]

Enzymes HRP-polymer nanocapsule - [139]

Enzymes 
Phosphate-phosphate  

APasa -hydrolizable bonds 
ATP [140]
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Table 2. Cont. 

 Stimuli Responsive Linker Capping Agent Ref. 

In
te

rn
al

 Small molecules Ionizable benzimidazole group CD-modified glucose oxidase [141]

Small molecules pAb  pAb  [142]

Small molecules ATP aptamer ATP aptamer [143]

PNIPAm: Poly(N-isopropylacrylamide); ssDNA: single-stranded DNA; CB[6]: Cucurbit[6]uril; PEI: poly(propylene imine); 

PEG: poly(ethylneglycol); CD: cyclodextrin; PAH: poly (allylamine hydrochloride); PSS: sodium poly(styrene sulfonate); 

PEM: polyelectrolyte multilayers; APase: acid phosphatase; PEGDA: poly(ethylene glycol) diacrylate; HRP: enzyme 

horseradish peroxidase; ATP: adenosine triphosphate; pAb: polyclonal antibody; MMP: matrix metalloproteinase. 

3.1. External Stimuli 

In this section, we focus on MSNs’ drug delivery systems that respond to external stimuli, such as 

temperature, electric fields, magnetic fields and light. In this case, an apparatus is needed to trigger 

drug release, which allows remotely controlling drug release and in some cases operating via “on-off” 

switching mechanisms. 

3.1.1. Temperature 

Researchers have strived to construct thermal-responsive MSNs for clinical applications. This 

approach permits an accurate and local control of drug release in unhealthy organs or tissues [144]. It 

is possible to artificially increase the temperature using external heat sources, heated fluid or 

magnetically induced hyperthermia, for instance. Grafting temperature-sensitive gatekeepers on 

MSNs’ surface allows controlling drug release applying temperature gradients. Thermolysis relies on a 

thermal stimulus to trigger cleavage of the chemical bond that constitutes the sensitive-linker, such as 

an Au–S or diazo (–N≡N–) bonds [145,146]. However, most of the temperature-responsive drug 

delivery systems consist in combining thermosensitive polymers with MSNs (Table 2). The most 

widely used polymers are those that are hydrophilic below their lower critical solution temperature 

(LCST). When the temperature rises above LCST, the polymer becomes hydrophobic and its 

conformation changes from an expanded or “coil” (soluble) to a contracted or “globular” (insoluble) 

state [147]. Despite it is a relatively simple drug delivery mechanism, in vivo application still remains a 

challenge due to the lack of effective methods to localize heat exposure only to diseased tissues. 

Nonetheless, this issue has been overcome in part by integration magnetic NPs into MSNs containing 

thermosensitive moieties. Magnetic NPs are able to generate a localized thermal effect upon exposure 

to an alternating magnetic field (AMF), which permits triggering drug release from thermosensitive 

MSNs-based systems [116–119]. 

3.1.2. Electric Field 

Electric fields are widely used as power and signal sources relying on the fact that electrotherapy 

has been developed to cure various diseases, such as brain diseases, voice and swallowing disorders, 

chronic resistant wounds, tumors, etc. [148–150]. However, studies on electric field-responsive MSNs 

are quite limited despite the achievements involving electrochemical processes [151,152]. Unlike other 

stimuli that require the use of large or specialized equipment, electrical signals are easy to generate and 
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control [153]. For instance, it is possible to assemble functional molecules with permanent electric 

dipole moments into mesoporous channels (Table 2) [116]. Upon application of an electric field, the 

flexible molecular chains swing to push the guest molecules out of the pore voids. 

3.1.3. Magnetic Field 

Magnetic fields have also attracted much attention since they play crucial roles in biomedical 

applications such as therapy and imaging. The use of the magnetic field as a release trigger is related to 

temperature, as above mentioned, and relies on the integration of magnetic NPs in MSNs systems to 

generate heat upon remote application of an AMF. Among magnetic NPs, superparamagnetic iron 

oxide NPs are mostly used [3,30,154]. These particles are the most suitable for biomedical applications 

because their remaining magnetization when they are suspended in biological fluids ceases on removal 

of the external AMF, showing lower aggregation drawbacks than other magnetic NPs. Some examples 

of magnetic field-triggered drug release from MSNs are displayed in Table 2. 

3.1.4. Light 

Light-operating nanodevices have attracted special interest for their controllability and  

rapid-responsiveness [155,156]. Light as external stimulus to trigger drug release from MSNs has 

many advantages, including remote responsiveness, non-invasiveness, highly controllable properties, 

low toxicity and convenient operation without affecting the neighboring zones. Light-responsive 

switches usually involve photoisomerization, photodimerization or photocleavage. One of the most 

exploited strategies consists in grafting MSNs with light-sensitive linkers capable of undergoing 

physicochemical changes (photoisomerization, photodimerization, etc.) or cleavage upon light 

irradiation (Table 2). Recently, an innovative light-responsive nanosystem consisting of MSNs 

decorated with a biocompatible protein shell cleavable by light irradiation has been reported  

(Figure 6) [76]. The proteins that compose the protein shell (avidin, streptavidin and biotinylated 

transferrin) plays a dual role acting both as targeting and capping agent, which avoid the use of 

redundant systems. The light responsive behavior is provided by a biotinylated photolinker covalently 

grafted to the mesoporous surface, which suffers photocleavage upon UV radiation (366 nm) and 

permits the release of the entrapped drug. The cytotoxic capacity of this system was evaluated in vitro 

against HT1080 cellular line which overexpresses transferrin receptors (TfR), showing an excellent 

performance being able to destroy the diseased cells using a very low particle dose (100% cell using 

0.01 µg/mL of the nanosystem). 
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Figure 6. Up: Schematic illustration of the action mechanism of light-responsive 

nanosystem based in MSNs decorated with a biocompatible protein shell (transferrin, Tf, 

grafted to MSNs using a light cleavable photolinker), affording MSN-Tf. Down: Cellular 

uptake of MSNs and MSN-Tf labeled with fluorescein. Confocal microscopy images show 

NPs (green) inside tumor cells (actin in red, nucleus in blue). The light irradiation of  

MSN-Tf provokes the cleaving of the photolinker, which triggers pore uncapping and 

subsequent drug release [76]. 

3.2. Internal Stimuli 

In this section, we discuss the recent developments in MSNs able to response to internal stimuli, i.e., 

those sensitive to chemical variations that arise in certain sites inside the human body. Smart MSNs 

that respond to internal stimuli have the advantage of not being invasive, since they do not require 

external mediation to trigger drug release. However, the control over drug dosage is lower compared to 

release nanosystems operating under external stimuli. Herein, we focus on drug delivery from MSNs 

triggered by internal stimuli, including pH modifications, variations in the redox potential and presence 

of certain enzymes or small molecules. 

3.2.1. pH 

pH is one of the most exploited internal stimulus to trigger drug release from nanomedicines and it 

has become the focus of numerous investigations in oncology [157]. The cancer process evolves with 

pH values different than those of healthy conditions. Thus, the extracellular pH of normal tissues and 

blood is approximately 7.4, whereas that in a tumor microenvironment is between 6.0 and 7.0, which is 

mainly caused by high glycolysis rate and high level of CO2 [61]. Moreover, when a NP is internalized 

inside the cell, it is exposed to different pH depending on the cell compartment or organelle [158]. 

Therefore, the pH value will drop further from the extracellular microenvironment of a tumor to 

intracellular organelles, such as endosomes (pH = 5.5) and lysosomes (pH < 5.5). Therefore, the abnormal 

pH gradients combined with the advantages of MSNs provide opportunities to develop pH-responsive 
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MSNs as drug delivery systems for cancer treatment. Many research groups have reported on  

pH-responsive MSNs modified with various gatekeepers. The triggered release of anti-cancer drugs from 

mesoporous channels has mainly been achieved by using polyelectrolytes; pH sensitive polymers such as 

poly(4-vinylpyridine), poly(2-(diethylamino)ethyl methacrylate), chitosan, starch or poly(styrene 

sulfonate); supramolecular nanovalves; pH-sensitive linkers (boronate, acetals, hydrazone, etc.); and 

acid-decomposable inorganic materials, among others. Some examples are shown in Table 2. Finally, 

an alternative strategy that does not require the use of pore capping agents consists in directly grafting 

the cytotoxic drugs to the surface of MSNs using pH-sensitive linkers [159,160]. 

3.2.2. Redox Potential 

Another interesting approach to developing smart drug delivery nanodevices is to take advantage of 

the different concentrations of certain reductive species, such as glutathione (GSH), between the  

intra-cellular and the extra-cellular space and also between normal and tumor tissues [161,162]. For 

instance, inside the cell, there are 1000 times more GSH than in the extracellular media. As GSH is 

able to cleave disulfide (S–S) groups, different capping agents, such as inorganic NPs, organic 

molecules and polymers, have been grafted to MSNs via disulfide bonds. Some examples are 

displayed in Table 2. Once the nanosystems are internalized and reach the intracellular space, the 

presence of increased amounts of GSH triggers the rupture of disulfide bonds, which leads to 

mesopore opening and permits drug release. Another reported strategy consists in the direct 

immobilization of the therapeutic agent into MSNs using GSH-cleavable disulfide bonds [163,164]. 

3.2.3. Enzymes 

Nanomaterial uptake occurs primarily via receptor-mediated endocytosis in which nanomaterials 

are taken up into the cytosol through vesicles that finally are being fused with lysosomes [162]. The 

interiors of such cellular vesicular compartments contain numerous enzymes, especially acid 

hydrolases [165–167]. Enzyme responsive ensembles are especially appealing to prepare tailor-made 

nanodevices due to the high selectivity, biological stability, function under mild conditions and 

efficient catalytic capability of enzymes, which paves the way to construct MSNs-based triggered 

release systems with the highest specificity, accuracy and efficiency [168]. Besides, there are other 

enzymes which are overexpressed in certain tumors [169–171], which can be also exploited as release 

triggers. Some representative examples of smart nanodevices consisting of MSNs end-capped via 

enzyme-cleavable linkages are displayed in Table 2. 

Very recently, a sophisticated approach consisting in the incorporation of enzymes in the 

nanosystem itself has been reported [139]. This strategy permits overcoming the limitation that, in 

some cases, is presented by the scarce concentration of the activating enzyme in the target zone, which 

is not sufficient to provoke a significant response. In this case, the enzyme responsible for the drug 

activation was covalently anchored on the external surface of MSNs. The enzyme wast firstly covered with 

a protective polymeric shell that permits the grafting to the silica surface was previously coated with a 

protective polymeric shell that allows the attachment on the silica surface while preserving its activity 

(Figure 7). In this work, indol-3-acetic acid (IAA), which was selected as pro-drug, was loaded into the 

mesopores and the enzyme horseradish peroxidase (HRP) coated with a protective polymeric shell was 
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grafted to the external surface of MSNs. Once MSNs are internalized by tumor cells, intracellular 

enzymes degrade the protective polymeric shell. This permits HRP to oxidize IAA molecules, which 

produces cytotoxic substances, mainly reactive oxygen species (ROS) capable to destroy human cells 

by damaging membrane and DNA compounds, mainly hydroxyl and reactive oxygen species (ROS), 

able to destroy human cancer cells by membrane and DNA damage [172]. The efficacy of this novel 

nanosystem for antitumor purposes was in vitro demonstrated using neuroblastoma cells, which opens 

the gates for further in vivo studies for oncology therapy. 

3.2.4. Small Molecules 

As in the previous case, some diseases are characterized by the production or accumulation of 

unbalanced amounts of certain chemical species. These agents can be employed as trigger events for 

drug delivery applications. Some examples of MSNs capped with gatekeepers sensitive to small 

molecules, such as glucose, antigens, adenosine triphosphate (ATP), etc., are presented in Table 2. 

3.3. Multi-Stimuli Responsive Mesoporous Silica Nanoparticles 

As tumor formation is a complex and multifactorial process, the combination of several drug 

delivery systems increases the likelihood of activation and, thus, an increase of their effectiveness 

would be also expected. This can be achieved by combining several types of stimuli responsive MSNs 

or by multi-responsive controlled drug delivery systems. Thus, different smart MSNs capable of 

releasing their cargo triggered by two stimuli, such as pH and glucose, [173] pH and GSH [101,174], 

enzymes and temperature [175], pH and temperature [176], among others, have been developed. 

 

Figure 7. Schematic illustration of the in situ cytotoxic generation for antitumor therapy [139]. 

(i) Functionalization of MSNs with amino group (MSN-NH2); (ii) loading of the  

pro-drug indol-3-acetic acid (IAA) (MSN-NH2-IAA); grafting of an enzyme 

horseradish peroxidase (HRP)-polymer nanocapsule to the external surface of the 

nanosystem (MSN-NH2-IAA-HRPc). TEM images of the nanosystem and cytotoxicity 

studies with neuroblastoma cells are also displayed. 
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Significant scientific effort has been committed to designing MSNs with pH and photoswitched 

drug release capability [177–179]. Within these systems, dual-stimuli MSNPs able to operate as AND 

logic gates are worth mentioning [178]. In this case, two different molecular machines were mounted 

on MSNs, namely, azobenzene as light-activated nanoimpellers and [2] pseudorotaxanes as  

pH-responsive nanovalves. Both molecular machines can act individually, but only the simultaneous 

activation of the two systems triggers cargo release. Recently, a dual pH-responsive MSN-based drug 

release system capable of respond both to the cancer extracellular and intracellular pH stimuli, has 

been described for synergistic chemo-photodynamic therapy [179]. By covalently linking histidine 

onto The two systems can act separately, but only the simultaneous activation of both molecular 

machines leads to cargo release. Very recently, an innovative dual pH-responsive MSN-based drug 

delivery system, which can respond to the cancer extracellular and intracellular pH stimuli, has been 

reported for synergistic chemo-photodynamic therapy [179]. By grafting histidine onto MSNs, the acid 

sensitive PEGylated cis-aconitic anhydridide tetraphenylporphyrin zinc (Zn-Por-CA-PEG) act as 

gatekeeper, blocking the nanopores by interaction between histidine and Zn-Por. Ath the extracellular 

pH of the tumor, ca. 6.8, the pH sensitive CA between PEG and Zn-Por breaks and the surface of  

Zn-Port contains positively charged amino groups to improve interaction between Zn-Por and 

histidine. At the cancer extracellular pH of ca. 6.8, the pH sensitive CA between Zn-Por and PEG 

cleaves and the surface of Zn-Por consists in amino positively charged to improve cell internalization. 

Besides, at the intracellular acidic microenvironment of ca. 5.3, the interaction between Zn-Por and 

hystidine is weakened, which provokes the removal of the gatekeeper and the Zn-Por departure. The 

photosensitivity of Zn-Por then allows combining chemotherapy and photodynamic therapy. This dual 

pH sensitive MSN-based drug delivery system provokekd higher in vitro cytotoxicity than the single 

chemotherapy of free DOX or photodynamic therapy of Zn-Por. This opens promising expectations in 

cancer therapy by overcoming the challenges in the efficient and specific drug release in the tumor site, 

and ideal antitumor efficacy. results in the removal of the gatekeeper and the Zn-Por drug release. The 

photosensitivity of Zn-Por further permits combining chemotherapy and photodynamic therapy. This 

dual pH sensitive MSN-based drug delivery system showed higher in vitro cytotoxicity than the single 

chemotherapy of free DOX or photodynamic therapy of Zn-Por, presenting its great potential for cancer 

treatment to overcome the challenges in efficient delivery in the site and ideal anti-cancer efficacy. 

Finally, complex multi-responsive MSNs capable of releasing drugs in response to more than two 

stimuli have been also reported [180,181]. 

4. Safety, Tissue Accumulation and Elimination of Mesoporous Silica Nanoparticles 

The safety of cancer therapies based on MSNs needs to be investigated according to in vivo 

protocols to evaluate their absorption, distribution, metabolism, excretion and toxicity [182,183]. As it 

is the case of pharmaceuticals, “the dose makes the poison”, and thus it is very important to define the 

concentration above which MSNs are no longer therapeutic but toxic. Toxicity must be identified for 

each type of MSNs after single (acute toxicity) and repeated (chronic toxicity) administration. Also, 

different exposure routes have to be compared [180]. Generally, silica-based materials are considered 

biocompatible and suitable for in vivo use [184–186]. MSNs, with the same composition to traditional 

silica NPs, exhibit characteristic features than may alter biological behaviors. For instance, MSNs 
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provoked substantially lower hemolytic effect than non-porous silica NPs due to the decreased silanol 

groups accessible to the cell membranes of mammalian red blood cells in the former [187]. Albeit 

numerous in vitro studies have demonstrated the low cytotoxicity of MSNs against different cell lines, 

several reports have indicated that residual structure directing agents, mainly ionic surfactants, could 

provoke severe cytotoxicity when they are not completely removed from MSNs by traditional 

extraction methods [188–190]. 

Zink et al. investigated the maximum tolerated dose (MTD) of fluorescent MSNs via intravenous 

administration into female nude mice with the dosage ranging from 10 mg/kg to 200 mg/kg, once per 

day for 10 days [80]. The results indicated that all mice were generally healthy, but the mice treated 

with dosages higher than 100 mg/kg showed some liver enzyme alterations. Long-term toxicity 

evaluations using healthy nude mice with the dose of 1 mg/mouse per day indicated that there were not 

anomalous responses during a two month period. However, studies carried out on female CD-1 mice 

indicated that the MTD of MSNs was only 30 mg/kg [191]. Above MTD, the major affected organs 

were kidney and lungs. The toxicity was lessened by modifying MSNs with amine groups, which 

increased the MTD to 150 mg/kg. In another study, it was demonstrated that intraperitoneal or 

intravenous administration of 1.2 g/kg MSNs was lethal to SV 129 mice but was safe when reduced to 

40 mg/kg [192]. For hollow MSNs, the lethal dose 50 of 110 nm rattle-type MSNs was higher than 

1000 mg/kg after single dose administration, and no death was observed by repeated administration of 

dose of 80 mg/kg during 14 days [193]. 

MSNs targeted with given ligands can affect organs’ distribution and, hence, the safety profile of 

these nanosystems. Testing biocompatibility and safety of MSNs is mandatory due to the great 

variations of characteristics in this type of materials is demanding due to the immense variation of 

characteristics in this class of materials [194]. For optimal cancer therapy, MSNs should reach tumor 

tissues without provoking adverse effects in normal tissues. In this sense, the bio-behavior, 

highlighting in vivo biodistribution, of MSNs is strongly related to the preparation procedures [188,189], 

particle sizes [189], particle shape [69] and surface modification. As previously mentioned, 

PEGylation of MSNs substantially improves the blood compatibility (e.g., much lower hemolysis 

effect) and reduces the non-specific binding to serum proteins, which increases the half-life of MSNs 

most likely by escaping recognition by RES organs [195]. Several research groups have proved MSNs 

accumulation in liver and spleen after systemic administration [189,196,197]. 

Meng et al. investigated the biodistributions of MSNs of different particles sizes (80, 120, 200  

and 360 nm) and their corresponding PEGylated counterparts (PEG-MSNs) [70]. As expected, the 

blood-circulation lifetime of PEG-MSNs was relatively longer. On the other hand, independently of 

the size, MSNs and PEG-MSNs mainly accumulated in liver and spleen after tail intravenous injection 

due to the recognition and phagocytosis of NPs by liver and spleen phagocytes, and few MSNs were 

found in the lungs and kidneys, and very few in the heart. Both MSNs and PEG-MSNs of larger 

particles sizes were more easily captured by the organs, which facilitates their degradation [103].  

PEG-MSNs of smaller particle size escaped more easily from the capture by liver, spleen and lung 

tissues, exhibited longer blood-circulation lifetimes and were more slowly biodegraded and, 

consequently, had lower excretion rates [70]. 

There are only few reports regarding the effect of the shape of MSNs on their in vitro and in vivo 

behavior. Huang et al. designed MSNPs exhibiting similar particle diameter, chemical composition 
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and surface charge but with different aspect ratios (ARs) (length: width) and evaluated their capability 

of being internalized by tumor cells via non-specific cellular uptake [68,69]. The results derived from  

in vitro tests indicated that particles with bigger AR (long rod shape) were taken up in larger amounts 

and showed faster internalization rate than particles with AR of 1 (spheres). The differences in the 

curvature of MSNs could be responsible for this different behavior. Thus, rod-shaped MSNs would 

have larger contact area with the cell membrane than spherical MSNs as the longitudinal axis of the 

rod interacts with the cell membrane. The influence of MSNs’ shape on the biodistribution, clearance 

and biocompatibility has been also investigated using MSNs with different ARs [69]. It was found that  

short-rod MSNs mainly accumulated in the liver, but long-rod MSNs were more easily trapped in the 

spleen. After PEGylation, the content of MSNs in the lung increased. The effect of MSNs’ shape on 

biocompatibility, such as hematology, serum chemistry and histopathology, was not apparent. 

The above mentioned parameters together with dissolution kinetics affect blood circulation time and 

clearance. In this sense, dissolved silica is known to be adsorbed or excreted by the body [198]. There 

are several reports that support elimination of MSNs through renal and hepatic routes in the form of 

urines and feces containing either solid MSNs or degraded products, being the renal excretion the 

major route [69,189,199] Unexpectedly, given the renal cut limit of 5–6 nm, several reports 

demonstrated intact MSNs in the urine but the exact excretion process remains unclear [23,93]. 

5. Current Challenges of Mesoporous Silica Nanoparticles 

Multidrug resistance (MDR) is the most important impediment for successful chemotherapy even 

with targeted drugs or/and combination chemotherapy [200]. In cancer chemotherapy, often  

drug-sensitive cells are killed, but a proportion of drug-resistant cells are left. The remaining cancer 

cells would grow again and result in tumor relapse and metastases. MSNs’ drug delivery systems can 

facilitate cellular uptake, increase intracellular accumulation and decrease cellular efflux in drug-resistant 

cancer cells. However, it is not sufficient for overcoming MDR. Another aspect to consider is the long 

and tortuous journey that MSNs experience in vivo since they enter the bloodstream until their 

intracellular action takes place [201,202]. MSNs must overcome stages of circulation, extravasation, 

accumulation, distribution, endocytosis, and endosomal escape before actuating. Most MSNs specialize 

in one or two of these stages, but each step is critical to the overall success of the therapy. This is why 

many MSNs probably get lost or spoiled on the way and do not reach their destination, or do it but in a 

non-functional state. 

Another major requirement of MSNs for cancer therapy purposes is an enhanced penetration 

capability within the solid tumor. The current in vitro tests are carried out using bi-dimensional cell 

cultures, which do not provide any information about the penetration capacity in living tissues. Thus, it 

would be desirable to use more realistic in vitro models, such as tumor spheroids, ex-ovo chick embryo 

models or 3D cell cultures. Another issue that must be taken into account regards the colloidal 

stability of MSNs in physiological media. This is of foremost relevance in the case of targeted  

stimuli-responsive MSNs, whose production requires multiple synthetic steps which could lead to 

irreversible aggregation. In this sense, the colloidal stability of MSNs and also after storing conditions 

should be evaluated using media that mimics as much as possible the physiological conditions. This is 

essential to guarantee that the colloidal stability and the stimuli-responsive behavior are maintained in 
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living tissues. This would allow for the industrial production and clinical translation of MSNs using 

cost-effective and scalable manufacture industrial production and clinical translocation of MSNs using 

cost-effective and scalable fabrication methods, which is still a great challenge [203]. 

The potential of active over passive tumor targeting in MSNs remains an unanswered question. As 

opposed to passive targeting, which mainly relies on the physiopathological properties of tumor tissue and 

circulation lifetime of MSNs, active targeting requires the incorporation of specific ligands. Promising 

in vitro results have been found, regarding improved binding, cellular uptake and efficacy of MSNs, 

but there is not clear evidence that the active targeting really improves their in vivo accumulation. In 

fact, there is a crucial concern about whether in vitro success of MSNs can also be reproduced in vivo. 

Generally, in the first decade of this century, researchers have focused on the basic characteristics of 

MSNs and their ability to deliver different kinds of anticancer drugs in cultured cells. Unfortunately, 

there are limited experimental data about in vivo fate of MSNs, which limits our knowledge about their 

clinical applicability in cancer therapy. 

6. State of the Art 

Since MSNs were proposed as drug delivery systems almost 20 years ago, they have undergone 

rapid development and have proven to be effective and versatile nanomaterials for the potential 

treatment of cancer and other diseases. Nowadays, it is possible to design multidrug nanodevices that 

can selectively target specific tumors and, once there, release their payload in response to certain 

stimuli. Despite the great progress of MSNs as antitumor nanomedicines, the biomedical application of 

these nanomaterials is only feasible if a deep understanding of their in vivo biocompatibility/toxicity 

and in vivo biodistribution is acquired. The versatility of MSNs highlights them as interesting drug 

delivery nanocarriers. Biological performance and applicability of MSNs have been demonstrated by 

preclinical experimentation, but systematic testing of biodistribution, safety and therapeutic efficacy by 

comparing various designs are still demanded to permit their translation from the lab bencch to and 

therapeutic efficacy as related to various designs are still needed to bring the technology closer to the 

clinic. Nowadays, our understanding of how nanoparticles behave in the human body is extremely 

limited, perhaps because it is not possible to achieve such encouraging results in clinical stages as in 

previous stages. However, our ability to manufacture particles with the desired characteristic will 

improve with time, as will our understanding of what characteristics will optimize efficacy against a 

given tumor. 
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