Nanomaterials 2015, 5, 792-803; doi:10.3390/nan05020792

OPEN ACCESS

nanomaterials

ISSN 2079-4991
www.mdpi.com/journal/nanomaterials

Article

Thermo-Optical Properties of Thin-Film TiO,—-Al,O; Bilayers
Fabricated by Atomic Layer Deposition

Rizwan Ali 1'*, Muhammad Rizwan Saleem :2-*, Pertti Piiikkonen ' and Seppo Honkanen !

! Institute of Photonics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland;
E-Mails: pertti.paakkonen @uef.fi (P.P.); seppo.honkanen @uef.fi (S.H.)

2 Center for Advance Studies in Energy (CAS-EN), National University of Sciences and Technology
(NUST), Sector H-12, 44000 Islamabad, Pakistan

* Authors to whom correspondence should be addressed; E-Mails: rizwan.ali@uef.fi (R.A.);
rizwan @casen.nust.edu.pk (M.R.S.); Tel.: +358-505-260-429 (R.A.).

Academic Editor: Thomas Nann

Received: 28 February 2015/ Accepted: 13 May 2015 / Published: 18 May 2015

Abstract: We investigate the optical and thermo-optical properties of amorphous
TiO5—Al,Og3 thin-film bilayers fabricated by atomic layer deposition (ALD). Seven samples
of TiO,—Al,O; bilayers are fabricated by growing Al,O3 films of different thicknesses on
the surface of TiO, films of constant thickness (100 nm). Temperature-induced changes in
the optical refractive indices of these thin-film bilayers are measured by a variable angle
spectroscopic ellipsometer VASE®. The optical data and the thermo-optic coefficients
of the films are retrieved and calculated by applying the Cauchy model and the linear
fitting regression algorithm, in order to evaluate the surface porosity model of TiO, films.
The effects of TiO, surface defects on the films’ thermo-optic properties are reduced
and modified by depositing ultra-thin ALD-Al,O3 diffusion barrier layers. Increasing the
ALD-Al,Og3 thickness from 20 nm to 30 nm results in a sign change of the thermo-optic
coefficient of the ALD-TiO,. The thermo-optic coefficients of the 100 nm-thick ALD-TiO,
film and 30 nm-thick ALD-AI,Os film in a bilayer are (0.048 & 0.134) x 10~* °C~! and
(0.680 4= 0.313) x 1074 °C~1, respectively, at a temperature 7' = 62 °C.

Keywords: atomic layer deposition (ALD); thin barrier films; thermo-optic coefficient;
titanium dioxide; aluminum oxide; optical materials
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1. Introduction

The continuous miniaturization of optical and photonic components with the growing inquisitiveness
to explore atomic-scale phenomena has led researchers to develop innovative techniques to fulfill the
requirements for atomic-level control. Atomic layer deposition (ALD), initially developed for the
deposition of uniform thin-films over wide areas of electroluminescent display devices [1], is a unique
method enabling an atomic-level control of film thickness and reproducible growth of defect-free films.
It is cost effective and, thus, suitable for low-cost mass production. Research and development in ALD
during recent years has led to a wide range of processes for new materials. In addition, the availability
of ALD reactors has paved the way for further improving the precise atomic-level thickness control,
achieving self-controlled alternating surface reactions, improving the wide area uniformity and obtaining
continuous pinhole or defect-free films [2]. With ALD, high quality thin-films can be deposited even at
room temperature [3], but also at high temperatures (up to 500 °C) [4]. One important feature of ALD is
the excellent conformality of the deposited films over corrugated and/or zigzag surface profiles [5].

The ALD process is based on sequential self-limiting chemical reactions of alternating precursor
molecules on the substrate surface at a given deposition temperature, which results in saturative surface
reactions. A typical ALD process proceeds in cycles composed of four steps. During the first step,
precursor “A” molecules are pulsed into the ALD chamber to chemisorb on the substrate surface followed
by purging with an inert gas to remove excessive precursor molecules or any other reaction by-products
(the second step). In the third step, the ALD chamber is pulsed with precursor “B” molecules, which
react with precursor “A” molecules chemisorbed on the substrate surface and form the desired binary
compound. This step is followed again by purging with an inert gas to remove non-reactive precursor “B”
molecules and/or any reaction by-products (the fourth step). This one complete AB ALD cycle results in
the deposition of a partial monolayer, typically with a thickness of around 0.1 nm/cycle. Several ABAB
ALD cycles are needed to form a uniform and high-quality film [6,7].

Titanium dioxide (TiO,) is a widely-studied metal oxide material due to having a high relative
dielectric constant, high melting point, stability at higher temperatures, low absorption in the visible
and infrared wavelength regions and temperature-induced reflectivity [8,9]. ALD-deposited TiO, has
significant potential in nanophotonics applications [6]. An important aspect of ALD-deposited TiO,
films is the adsorption of water molecules during the growth process, which leads to a change in the
refractive index of the films due to environmental effects, such as temperature, pressure and humidity.
Such index changes can also be accompanied by a bandgap change of the dielectric films due to the
adsorption of water or other hydrogenated species at interstitial positions [10].

In this paper, we propose to modify the thermo-optic coefficient of TiO, thin-films by employing a
TiO5—Al,Og3 bilayer film (see Figure 1). This may be useful in various nanophotonic devices, e.g., if
athermal optical properties are desired. Due to the excellent film uniformity and low surface roughness
obtained by ALD, it is an ideal deposition method for the fabrication of TiO,—Al;O3 bilayers [11].
We study the thermo-optic coefficients of ALD-TiO, films of a 100-nm thickness and the influence of
the ALD-AI,Og thin-films of different thicknesses (10—70 nm) as barrier layers, in order to validate the
surface porosity model introduced earlier [10,12]. The proposed model explains the reduction of surface
defects on TiO, films due to the ALD-Al,O3 diffusion barrier layer and the reduction of the evaporation
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rate of water molecules from TiO, films through the ALD-Al,O3 diffusion barrier layers. The concept
is based on the assumption that the TiO, surface maintains the same energy levels (bandgaps) after
coating by ultra-thin ALD-Al,Og3 diffusion barrier layers. This is because the interfacial energy levels
may change significantly due to the evaporation rate of water molecules from the TiO, surface and/or
chemical reactions or environmental interactions.

The paper is organized as follows: Section 2 describes the fabrication, thermal measurements and
the formulated optical model viable for the evaluation of ellipsometric parameters and stacked layer
thicknesses through a polynomial fitting. Section 3 presents the experimental results and analysis of
TiO,, films of 100-nm thickness coated by ALD-Al,O; diffusion barrier layers with different thicknesses.
Finally, conclusions are presented in Section 4.

Si substrate SiO2 layer ~2 nm

Figure 1. Schematic diagram of a TiO, and Al,Oj3 bilayer film grown by atomic
layer deposition (ALD) on a Si substrate. The illumination geometry in ellipsometric
measurements is also shown.

2. Experiments and Data Analysis

2.1. Sample Fabrication

In this study, seven bilayer samples containing a 100 nm-thick amorphous TiO; film and amorphous
Al,O5 diffusion barrier layers with different thicknesses (from 10 nm to 70 nm) were fabricated by
ALD on 2-inch silicon wafers with crystal orientation <100> by using a Beneq TFS 200-152 ALD
reactor. The samples were not exposed to ambient environment between the depositions of the two
layers. The employed wafers were doped with phosphorus (n-type), have a thickness of 380 & 25 um
and a native oxide layer with a thickness of 2 nm. The thickness of each ALD-grown layer was measured
by the Dektak-150 stylus surface profilometer from Veeco technology, and the values were confirmed
by ellipsometry measurements. The precursor species for the deposition of TiOy and Al;Og thin-films
were titanium tetrachloride (TiCly) and trimethylaluminum (Al(CHs)s), respectively, as well as H5O.
Nitrogen (N3y) was used as a purging gas. During the processes, the ALD chamber and the reactor were
maintained at pressures of 5 mbar and 2 mbar, respectively. The ALD chamber N, flow was 200 sccm
(standard cubic centimeters per minute), and the process Ny flow was 600 sccm. During the TiO, film
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deposition, the TiCl, pulse time was 150 ms, and the N5 purge time was 750 ms; whereas the H,O pulse
time was 150 ms, and the N5 purge time was 1 s. After the deposition process, the temperature was set to
20 °C, and the gas ballast time was 5 min to stabilize the end of the deposition process. At the end of the
deposition process, the TiCl, gas line was purged with Ny gas for 2 min. TiO, thin-film deposition was
carried out at a temperature of 120 °C. Except for the Al precursor, the same deposition cycle parameters
were used to deposit the Al,O3 thin-films. The growth rates of TiO, and Al;Oj3 thin-films were 0.065 nm
and 0.12 nm per cycle, respectively.

2.2. Thermal Measurement Setup

The thickness-, wavelength- and temperature-dependent refractive indices n = n(tr.a, A, T') of the
bilayer TiO, and Al;O3 thin-films were characterized by a variable angle spectroscopic ellipsometer
VASE® with a High-Speed Monochromator System HS-190™ (manufactured by J.A. Woollam Co.,
Lincoln, NE, USA). It contains a continuously-rotating and adjustable wave plate analyzer, and a
maximum beam spot size of 3 mm was used. The temperature-dependent refractive index of each
bilayer sample was measured by a customized temperature-controlled heating device fabricated in-house.
The heating device consists of an aluminum plate with adjustable mechanical clampers to hold the
sample, thermocouples, a thermometer (manufactured by Fluke Corporation, Everett, WA, USA) and an
adjustable power supply. The measurements were carried out for a temperature range from 7' = 22 °C to
T = 102 °C with temperature steps of 10 °C and with a reading accuracy of +0.1 °C. The temperature
was precisely controlled by the adjustable power supply, and it was also measured by a Handheld Infrared
Thermometer (Model Convir ST8811, manufactured by Calex Electronics Limited Co., Bedfordshire,
UK). The measurements were done for a spectral range from 380 nm to 1800 nm with 5 nm wavelength
steps. Three angles of incidence (59°, 67° and 75°) around the pseudo-Brewster angle were used in

measurements for each temperature.

2.3. Structural Measurements

For structural characterization of the TiO, and Al,Oj3 thin-film bilayers, the samples were sputter
coated with a thin (less than 8 nm thick) conductive copper (Cu) by a K675X Turbo Large Chromium
Coater 8. The sputter-coated samples were characterized by a scanning electron microscope (SEM),
LEO 1550 Gemini. The surface morphology measurements of the ALD-TiO,—Al;O5 thin-film bilayers
were carried out by an atomic force microscope (AFM, MultiMode® with High-Speed ScanAsyst-Air
Mode, Bruker Co., Billerica, MA, USA). The tapping mode in air was employed, and the software
Nanoscope Analysis Version 1.50 was utilized in the AFM image analysis. The surface roughness of
each sample was measured by scanning a surface area of 1 pum x 1 um of the sample.

2.4. Ellipsometry and Optical Model for Bilayer

As mentioned above, a variable angle spectroscopic ellipsometer was used to characterize and
determine the optical properties of the fabricated samples. The analysis was carried out with WVASE32
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ellipsometric data analysis software from J.A. Woollam Co., in terms of ellipsometric parameters ¥ and
A to express the polarization state of a reflected light beam [12,13]. Figure 1 illustrates schematically
the interaction of polarized light with a sample and also the porosity at the surface of the TiO, layer. The
varying angles of incidence in spectroscopic ellipsometry were set near the pseudo-Brewster angle to get
the best sensitivity for the measured values of A [14].

In our optical model (see Figure 1), a polarized light (plane wave) illuminates a bilayer at an angle of
incidence ®. In this model, a 100 nm-thick (1) TiO, film is considered on a native oxide (SiO,) layer
of ~2 nm in thickness (confirmed also with ellipsometry measurements). This, in turn, is on top of a
0.5 mm-thick Si substrate. On top of the TiO, film, a thin layer of Al,Os3 is added. Its thickness 4 is
varied from 10 nm to 70 nm. The model uses WVASE32 ellipsometry software in fitting the ellipsometric
parameters ¥ and A to retrieve the experimentally-measured data at each wavelength within the defined
spectral range. We did not add the layer of surface roughness and voids to the model (see Figure 1), since
it would have been very difficult to properly add this non-uniform layer to the model. In addition, this
layer would have a negligible effect, since the average surface roughness values of the TiOy and Al,O3
nanoscale layers are only ~ 1 nm. To assure the validity of this optical model, the errors were computed
by a regressive algorithm and identified within a 90% confidence limit.

2.4.1. Retrieval of the Film Thickness and Optical Constants by Optical Models

The thicknesses and optical constants of TiOy and Al,Os3 in the fabricated thin bilayer films were
extracted by a Cauchy model. The optical constants of the films in these bilayers, with a corresponding
uncertainty (statistical deviation values), were calculated at a wavelength of 640 nm. The Cauchy
dispersion formula and the corresponding uncertainty equations used are given below, respectively, in
Equations (1) and (2) [15]:

nA)=A+ 5+ — (1)

oB oC
V)Q + (7)2] (2

Here, A, B and C are Cauchy parameters and the unit of wavelength is um. The final values of Cauchy

o[n(N)] = [(0A)* + (

model parameters were determined by fitting the model-generated data to the experimental data.

Thermal measurements for the bare Si substrate, with a thin native oxide layer, were first carried out
for the temperature range from 7" = 22 °C to T' = 102 °C, as described in Section 2.2. The thermal
results for the Si substrate were added as the default for each temperature point in the beginning of the
modeling scheme. The thermal data for the SiO, layer embedded in the WVASE32 software was used.
The appropriate minimum and maximum thickness values of each layer in the bilayer, together with
the initial values of Cauchy parameters, were assigned using the edit fitting parameters. Upon optimum
fitting between the experimental and the model data, the thickness and optical constants of each layer in
the bilayer were determined, at a wavelength of 640 nm. Figure 2 shows room temperature spectroscopic
ellipsometric measurements, in terms of ellipsometric parameters ¥ and A fitted by the Cauchy model at
three angles (59°, 67° and 75°), for a bilayer consisting of a 100 nm-thick TiO4 layer and a 30 nm-thick
Al,Og layer.
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Figure 2. Spectral dependence of the measured ellipsometric data at room temperature:
(a) ¥ and (b) A for a bilayer with a 100 nm-thick ALD-TiO, and a 30 nm-thick ALD-Al,Os3.
The data are fitted by the Cauchy model at three different angles (59°, 67° and 75°).

2.4.2. Polynomial Fitting by Regression Algorithm

Finally, the thermo-optic coefficients for each layer in the bilayer along with their uncertainties were
calculated using the refractive index data calculated at a 640 nm wavelength and employing a polynomial
fitting algorithm. The procedure of this polynomial fitting is explained in detail in [16,17]. In our case,
the thermo-optic coefficients and the associated standard uncertainties are at the 90% level of confidence.

3. Results and Discussion

Thermo-optic coefficients of the bilayers comprising a 100 nm-thick ALD-TiO; film and
ALD-AlL,O3 films of different thicknesses, from 10 nm to 70 nm, were evaluated after fitting the
experimentally-measured data. To illustrate the high quality of these bilayers, Figure 3 shows an SEM
image of a cross-section of a bilayer with 20 nm-thick ALD-Al,Og3 diffusion barrier layer to protect the
TiO, surface from water vapor evaporation.

200 nm

Silicon-Layer
Interface

Figure 3. Scanning electron microscope (SEM) image of a bilayer consisting of a
100 nm-thick ALD-TiO, and a 20 nm-thick ALD-Al,O3 film, on a Si substrate.
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It has been previously reported that TiO, films possess negative thermo-optic coefficients due to the
desorption of H,O and OH™ species at the OH-H,O surface-bound sites [12,18,19]. The adsorption of
water molecules either undergoes dissociations at particular defect sites or they are adsorbed molecularly.
Such evaporation of water molecules can be effectively minimized by an ALD-deposited Al,O3 diffusion
barrier layer. This is due to the pinhole and defect-free nature of even very thin ALD-Al,O3 films,
which cap the TiO, surface and eliminate the desorption of water molecules at elevated temperatures.
Figure 4a shows the temperature dependence of the refractive index dispersion curves of a 100 nm-thick
ALD-TiOs film coated by a 30 nm-thick ALD-Al;Og diffusion barrier layer. Figure 4b shows the same
for the 30 nm-thick Al;Og barrier layer. Considering the calculation of thermo-optic coefficients at the
wavelength of 640 nm, one can observe that the ALD-TiO, index is nearly constant, and the Al,O3 index
increases with temperature [20].

The temperature dependence of the refractive index of the 100 nm-thick ALD-TiO, film as a function
of the Al,Oj film thickness, n(7,ta), at a wavelength of 640 nm, is shown in Figure 5. This TiO,
temperature dependence is shown in the case of the ALD-Al,O3 diffusion barrier layer thicknesses of
20 nm (Figure 5a) and 30 nm (Figure 5c). The corresponding temperature dependencies of the Al;O3
diffusion barrier layers are shown in Figure 5b,d. As mentioned above, with a 20 nm-thick ALD-Al,03
diffusion barrier layer, the refractive index of the 100 nm-thick ALD-TiO, film decreases slightly with
temperature. This temperature dependence is very similar to that of a single 100 nm-thick TiOy film,
indicating a very small barrier effect [12]. However, by increasing the diffusion barrier layer thickness
only by 10 nm, i.e., to 30 nm, the refractive index of the TiO- is nearly constant with temperature. It
can also be seen (Figure 5d) that the refractive index of the 30 nm-thick ALD-Al;O3 film increases with
temperature rather than decreases, as is the case with the 20 nm-thick ALD-Al;O3 film (Figure 5b).
This is expected when the Al,O3 film is thick enough. These results clearly indicate that a 20 nm-thick
ALD-AI,O3 film is not yet pinhole free, while a 30 nm-thick film acts as an efficient, nearly pinhole-free,
diffusion barrier layer. Consequently, a different behavior of the refractive indices with the temperature
is observed for the ALD-Al,O3 films of 20-nm and 30-nm thicknesses in Figure 5b,d, respectively. In
addition, the temperature dependence of the refractive index of a TiO, thin-film does not depend only on

its own properties, but also on the thickness of the diffusion barrier layer.
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(b) a 30 nm-thick ALD-AIl,0O4 film in a TiO,—Al;Oj3 bilayer at different temperatures.




Nanomaterials 2015, 5

2.388 o i‘i’tt;azc;i:‘:nh;dljé?;;;"f 100 nm TiO, film 1.63f O Refractive Index Data of 20 nm ALO, film
L uadratic uadratic

2386 auad =< 1.62/ :
be >
3 , 3
s 2.384 o 2 1.61 -
o )
= ©o = -
‘:‘)‘ 2.382¢ o ° g 1.6/ . o
b5 o o = o
& 238 o'y & 1.59 oo

2.378 @ : : : : : ® ”

"0 20 40 60 80 100 120 1% 20 40 60 80 100 120
Temperature T [°C] Temperature T [°C]
2.4 Refractive Index Data of 100 nm Ti02 film 1 .63 [ O Refractive Index Data of 30 nm AIZO? film
with 30 nm A12O3 film N
t linear linear

4 2.395 =<1.625!
) 5
E 239 2 162 n
) 00O o ° oo o
Z 0o %o > g o
2 2385 o °  1.615 . o
& S
Q S
& 238 & 1.61; o

2.375 © : : : : : 1.605 @ : : : : :

0 20 40 60 80 100 120 70 20 40 60 80 100 120

Temperature T [°C]

Temperature T [°C]

799

Figure 5. Temperature dependence of the refractive index of ALD-TiO, and ALD-Al,O3
films in bilayers: (a) for a 100 nm-thick TiOs film with a 20 nm-thick Al,O3 diffusion
barrier layer; (b) for a 20-nm Al,Oj diffusion barrier layer; (¢) for a 100-nm TiO, film with
a 30-nm Al,Og diffusion barrier layer; and (d) for a 30-nm Al;O3 diffusion barrier layer.

Figure 6a shows an atomic force microscopy (AFM) image of a 100 nm-thick ALD-TiO film with
a surface roughness of R, = 1.10 nm. The surface roughness of a similar 100 nm-thick ALD-TiOs film
with a 20 nm-thick ALD-Al;Oj3 film is less than 1 nm and is shown in Figure 6b. This means that the
surface roughness of the TiO, films is reduced after coating with an ALD-Al,O3 film.

The temperature dependence of the permeation through a diffusion barrier layer provides information
about the dominating permeation mechanism for HoO and OH™ species, since the vapor permeation
through solids is a thermally-driven process. The temperature-dependent permeation process can be
described by the Arrhenius equation [21] as:

—Ep
q = qo-€ *T

3)

where ¢ is the permeation coefficient, g is the system-dependent constant permeation coefficient, Ep is
the activation energy and k is the Boltzmann constant. The activation energies depend on the diffusion
barrier layer, which is interpreted by a chemical interaction between water molecules and the coated

diffusion barrier layer.
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Figure 6. The atomic force microscopy (AFM) images of (a) a 100 nm-thick ALD-TiO,
film deposited on a Si substrate with a surface roughness value R, = 1.10 nm; and (b) a
100 nm-thick ALD-TiOs film with a 20 nm-thick ALD-Al,Og film with a surface roughness
value R, < 1 nm.

Figure 7 shows the thermo-optic coefficients of ALD-Al,O3 and ALD-TiO, films as a function of the
thickness 5. The thermo-optic coefficient of the Al;Os film attains a positive value when the thickness
ta is 30 nm or more (Figure 7a), i.e., when the film is nearly pinhole free and uniform. With thicker
films, up to 70 nm in thickness, no rapid increase in the thermo-optic coefficient appears. On the other
hand, the thermo-optic coefficient of the 100 nm-thick ALD-TiO, film appears to increase linearly with
thicknesses ¢, as seen in Figure 7b. A linear fit gives an equation:

e

For its dependence on ¢ . Here, the slope of 6.7 x 10~¢ has dimensions of °C~! nm~!; —2.2 x 10~%

Ti0y = 6.7 x 1070, — 2.2 x 107 “4)

is a constant with a dimension of °C™!; and ¢, is the thickness of the barrier layer in nm. The slope
of the straight line is described as per degree increase in temperature per nm, which determines the
amount of activation energy required for water molecules to permeate through the ALD-Al;O3 diffusion
barrier layer. If one increases the thickness ¢, of the barrier layer, the required activation energy will
increase, and less water molecules are able to permeate through the barrier layers. This, in turn, will
result in an increase in the thermo-optic coefficient of the TiO, film and, consequently, in an increase
in its density. Interestingly, the thermo-optic coefficient can attain a positive value, although the TiO,
films typically possess a negative thermo-optic coefficient. This may also be interpreted as acquiring low
thermodynamic energies in order to fill surface defects of TiO, films to minimize pinhole defects. As a
potential application for these ALD-TiO,—Al;O3 bilayer films and nanostacks, we propose resonance
waveguide gratings (RWG), which have important applications in sensing [22].

Typically, the RWG spectral characteristics encounter a spectral shift under varying thermal
conditions and consequently make the resonance peak unstable for accurate sensing [23]. In order to
mitigate the effect of temperature-dependent variations in the refractive index of TiO2, RWG surfaces can

be coated with thin Al;Oj3 layers as diffusion barrier layers. To illustrate this approach, Figure 8 shows
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an RWG structure fabricated on fused silica substrate and employing an ALD-TiOs—Al;O3 nanostack as
the waveguide. It is worth mentioning that the use of ALD results in highly conformal coating on the

corrugated substrate.
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Figure 7. Thermo-optic coefficients of (a) Al,O3 and (b) TiO films.

Figure 8. SEM image of a resonant waveguide grating structure with a TiO,—Al,Oj3 bilayer

as the waveguide layer, on a fused silica substrate.

4. Conclusions

Thin-film bilayers of TiO; and Al,Os were fabricated by ALD, and their temperature-dependent
optical properties were spectrally characterized by ellipsometry. The experimental data were analyzed
with the support of optical models and respective regression algorithms. The ellipsometry data measured
for these bilayers were fitted by the Cauchy model, which provided optical constants both for TiO, and
Al;Oj3 thin-films. The determined optical constants were then used for the evaluation of thermo-optic
constants of TiO, and Al,Os thin-films in this bilayer configuration. Thermo-optic properties of
ALD-TiOs films with a thickness of 100 nm, in the presence of diffusion barrier layers of ALD-Al;O3
with different thicknesses, were presented. The results were discussed in terms of the porosity model of
thin TiOs films. The study included the gradual increase of the thickness of the diffusion barrier layer,
which resulted in a change in the refractive index and thermo-optic coefficients of the two thin-film
materials. On increasing the thickness of the ALD-Al;O3 diffusion barrier layers from 20 nm to 30 nm,

the initially negative thermo-optic coefficient of a 100 nm-thick TiO, film turns positive. The increase in
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its thermo-optic coefficient with the thickness of the barrier layer exhibits a nearly linear relation, with a
slope that determines the activation energies required for HoO and OH™ species to permeate through the
barrier layer. The proposed ALD-grown bilayers and nanostacks may have potential in nanophotonics
applications, in which temperature-dependent operation is a nuisance. For example, biosensors based on
resonance waveguide gratings typically require accurate control of the ambient temperature, which may
be alleviated with the proposed approach.
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