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Abstract: The effect of sonication temperature on the debundling of carbon nanotube 

(CNT) macro-bundles is reported and demonstrated by analysis with different particle 

sizing methods. The change of bundle size over time and after several comparatively gentle 

sonication cycles of suspensions at various temperatures is reported. A novel technique is 

presented that produces a more homogeneous nanotube dispersion by lowering the 

temperature during sonication. We produce evidence that temperature influences the 

suspension stability, and that low temperatures are preferable to obtain better dispersion 

without increasing damage to the CNT walls. 

Keywords: carbon nanotube (CNT) dispersion; cryo-sonication; air/water/CNT interface 
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1. Introduction 

As nano-materials typically have a very high surface area per gram of material, they tend to 

agglomerate in order to minimize their surface energy and reduce their exogenous interactions. Dense 

carbon nanotube (CNT) bundles typically form either (i) during the CNT growth, (ii) during the 

recovery of the CNTs from their growth substrate by mechanical entanglement or (iii) during the initial 

dispersion steps due to solvation effects. The use of CNTs has been investigated in a very large range 

of applications over the past 20 years. Recent research as well as commercialized products have shown 

that CNTs can be used, for example, as performance-enhancing additives in adhesives [1,2],  

coatings [3–5] and in thin film membranes [6–8] or as reinforcements for high strength composite 

materials [9–11]. The benefits of CNT use are typically an increased resistance to thermal  

stress [12,13], harsh chemical reactions, corrosive environments, extreme pressures and  

abrasion [14–16]. However, once grown, CNTs are typically available as dry pristine material and a 

dispersion process that produces stable and well dispersed suspensions is required prior to further  

use [17–20]. 

One of the main issues concerning the characterization and detection of CNT is their very high 

aspect ratio. Since the ratio of length to diameter is very high, few experimental techniques can 

quantitatively characterize them. Although dry CNT bundles stick together solely by van der Waals 

forces [7,21–23], the interactions between suspended CNTs dispersed in solution are much more 

complex and depend on a number of parameters including the solvent polarity and viscosity, the type 

and amount of nanotube surface functional groups and processing conditions such as the temperature 

or pH [24]. As nano-materials typically expose a very high surface area per gram of material, they tend 

to agglomerate in order to minimize their surface energy and to reduce exogenous interactions [25–30]. 

Although numerous methods have been demonstrated to efficiently purify and disperse CNTs [31–33], 

the quality and stability of the suspensions over time are still issues that need to be improved. The 

process of dispersing CNT typically involves one or a combination of the following approaches [31,34]: 

covalent functionalization of the CNT surface to improve their chemical compatibility with the 

dispersing medium [28,35]; the use of a third component such as a surfactant [29–31,36], polymer [37] or 

biomolecules (such as DNA [38]); or mechanical individualization treatments such as ultra-sonication 

and shear mixing. The dispersion steps need to be carefully chosen to suit the type of CNTs and the 

final application so that the desired CNT properties are not adversely affected [24,39,40]. Further details on 

purification and dispersion techniques can be found in a number of articles and reviews [31,35,41,42]. 

Some groups have recently also investigated the impact of temperature on CNTs dispersed in  

Pyrene- functionalized poly (N-cyclo propyl acrylamide) [43] and pH responsive polymers where a 

lower sonication temperature was shown to improve CNT dispersability [44].  

This work presents results on a novel and simple dispersion method based on careful control of the 

sonication temperature of the CNT suspension that (i) avoids substantial damage to CNTs while (ii) 

leading to more homogeneous and stable suspensions where the CNTs are largely individualized in 

solution. This tendency to agglomerate to bundles becomes particularly apparent over time, when the 

dispersion is not stirred or otherwise agitated. A method involving the use of propan-2-ol and cycles of 

freezing and sonication at low intensity settings is described in the following. 
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2. Experimental Details 

CNTs grown as forests by Chemical Vapour Deposition (CVD) at CSIRO Materials Science and 

Engineering using a method described elsewhere [45] were scraped from the growth support using a 

surgical blade and dispersed in analytical grade propan-2-ol (IPA). IPA was chosen as solvent due to 

its ability to wet CNTs, the low toxicity and a low freezing point of −90 °C. Three dispersions at 

respective concentrations of 0.026, 0.26 and 2.6 mg/L were prepared and initially sonicated once in a 

bath sonicator at 100 W for 15 min. The solutions were subsequently subdivided into batches kept at 

various temperatures, ranging from −17, 20, 40 and 60 °C. Each batch was sonicated once each day 

during the course of the study for 10 min (unless otherwise specified) at an initial temperature 

corresponding to its assigned temperature. As a comparison to bath sonication, horn sonication was 

performed for 5 min at 100 W. 

A Zeta SizerNano ZS90 (Malvern Instruments; Worcestershire, UK) and a Cary 300 Bio UV-visible 

Near Infra-Red spectrophotometer were used to characterize the bundle size and illustrate the breaking of 

the macro bundles over the sonication steps while optical images of the suspensions were taken 

periodically to assess the dispersion process. Bucky-papers, i.e., non-woven mats of CNTs, were formed by 

vacuum filtration of the suspensions of these solutions at −25 kPa [7] and characterized by Scanning 

Electron Microscopy (SEM) using an environmental Philips XL30 SEM with Oxford Si(Li)  

X-ray detector and HKL EBSD system or a Philips FEG SEM (imaging at 2 kV). Transmission Electron 

Microscopy (TEM Tecnai F30; FEI, Hillsboro, OR, USA) images of nanotubes applied directly to TEM 

grids from the respective dispersion were used to reveal the CNT morphology after treatment and 

assess the degree of damage to the CNT walls due to sonication. Decantation tests were also performed 

by recording periodic images of as-sonicated suspensions over long periods of time (up to 6 days). 

These images were used to assess the colloidal stability of the suspensions. 

3. Results 

3.1. Effect of Powerful Horn Sonication on CNT Integrity and Debundling 

As shown in the SEM images in Figure 1 there were macro-sized bundles of CNTs present in the 

sample that required additional individualization to fully use the potential of the CNTs. 

Individualization of CNTs is typically undertaken by sonicating suspensions of CNTs at high 

intensity using a horn sonicator. Although this fast method leads to homogenous suspensions, it also 

induces defects in CNTs that can impair the use for designated applications. A series of tests was 

performed on the same batch of CNTs whereby well dispersed suspensions were obtained by horn 

sonication after only 15 to 30 s of treatment depending on the intensity used (Figure 2). On average, 

after 15 s, the bundles were clearly dispersed and solutions were stable for a few minutes at room 

temperature before the formation of bundles slowly re-occurred. 
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Figure 1. Scanning Electron Microscopy images (SEMs) showing carbon nanotube (CNT) 

bundles (A) CNT bundles scattered on the surface and partially embedded in the BP 

thickness; (B) spot zoom of (A) on a dense bundle where the CNTs are clearly highly 

entangled; (C) large defect due to a CNT bundle with a low density structure and (D) spot 

zoom of (C) on CNT rope-style bundle with highly intricated structure. 

 

Figure 2. Example of the horn sonication efficiency at various times (time in seconds 

shown below each image). The nominal power was 75 W @ 50%; the suspensions were 

initially at room temperature. 

 

However, as Figure 3 illustrates, horn sonication dramatically damaged the CNTs. The originally 

highly ordered CNT walls [45] were snapped or partially collapsed under the influence of the 

sonication. The TEM micrographs show how the CNT walls were broken and defects introduced. Such 

damage can have adverse effects on product quality and induce changes in the chemical and 

mechanical behavior of the CNT when incorporated into composite structures. For this reason, where 

possible, short periods of sonication or more gentle sonication techniques (i.e., bath sonication rather 

than horn sonication) were investigated. 
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Figure 3. TEM of Chemical Vapour Deposition (CVD) CNTs after horn sonication; clear 

damage to the walls is visible in the micrographs. 

 

3.2. Analysis of Bundling During Sonication 

The UV/visible spectra shown in Figure 4 exhibit three well-formed peaks at the wavelengths 

reported in Table 1. While the peaks between 190 and 199 cm−1 are related to absorption of  

propan-2-ol, the peaks at 225, 277 and 285 cm−1 correspond to absorptions by the CNTs. The relative 

intensity of the CNT absorptions to those of IPA was found (at low concentrations) to be related to the 

concentration of CNT in the dispersion and to the degree of bundling. The latter is illustrated by the 

observation that the relative intensity of the CNT peaks was reduced after several sonication cycles, 

which indicates that additional sonication steps helped to improve the homogeneity of the dispersion. 

No significant changes occurred after day 3. Despite the clear qualitative trend, results from Figure 4 

suggest that the limited sensitivity of the method does not enable quantitative results to be deduced 

from the spectra. The method furthermore did not produce any qualitative evidence of the impact of 

temperature on the dispersion phenomenon. 

Table 1. Main absorption peaks found for the carbon nanotubes (CNTs) (at 2.6 mg/L). 

Peak number from Figure 4 Peak wave length (cm−1) 

1 (propan-2-ol) 199 
CNT Peak 1 225 
CNT Peak 2 277 
CNT Peak 3 284 

Particle size results from dynamic light scattering (DLS) are shown in Figure 5. The “as prepared” 

CNT dispersions initially exhibited a particle size peak in the vicinity of 700 nm and a second smaller 

peak near 200 nm particle size. A broader size distribution was however found after three cycles of 

sonication at 20 °C and the peak was shifted towards larger sizes of around 1000 nm. The highest peak 

intensity was found after the second cycle and was reduced after each following cycle.  
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Figure 4. UV-visible absorption spectra for CNTs at 2.6 mg/L. The suspension was 

sonicated for 30 min at 50 W (20 °C) every day for 10 days in a bath sonicator (stored at 

−17 °C between sonications); the peak at 195 corresponds to the non-transparency of IPA 

at small wavelength. 

 

Figure 5. Impact of repeated sonication at 20 °C (at 50 W). Each cycle corresponds to a 

sonication of 10 min every 24 h. 

 

However, the high aspect ratio of the CNTs (>1000) is likely to affect the accuracy of the reading 

and the meaning of the results. Although large CNT bundles can be detected, the shape of the bundle 

affects the laser scattering. The combined morphology and position of the bundle towards the laser 

source is therefore critical but cannot simultaneously be controlled. This should be considered while 

interpreting the data as DLS models are only relevant to perfect spheres and neither to rods nor to rod 

bundles. As individual CNTs can be considered as nearly 1D structure, they also cannot be accurately 

quantified for the same reason through this method. DLS results must therefore be interpreted 

qualitatively rather than quantitatively, and only relative changes over the course of the treatments 

should be considered. However, changes of average CNT bundle size after dispersion treatments can 

be implied from the results shown in Figure 5. This result suggests that repeated sonication does not 

necessarily improve the overall CNT dispersability but may lead to a more poly-dispersed system [14]. 
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3.3. Stability and Dispersability of the Suspensions After Sonication at Higher Temperatures 

The impact of the suspension temperature after sonication of CNT dispersions was captured on 

photographs in Figure 6. Three different suspension temperatures were investigated (20, 40 and 60 °C). 

The suspensions were kept in storage at room temperature and only heated to the designated 

temperature before they were sonicated for 30 min at 150 W using a sonicator bath each day and then 

tested in the UV/visible spectrophotometer. The suspensions were left for 24 h at room temperature 

before the procedure was repeated on the next day. A visual inspection of Figure 6 shows that the best 

dispersed and suspended CNT solution was the one sonicated at lower temperature (suspension C). Larger 

bundles were clearly visible for suspensions sonicated at higher temperatures. This increased tendency 

to agglomerate was attributed to the increased suspension temperature during sonication and the result 

indicates that temperature is a critical parameter in the dispersion of CNT via sonication. In addition, 

temperature may also be important in determining the rebundling kinetics when left overnight for 24 h, 

as suspensions kept at lower temperature show better stability after the very first sonication cycle. 

Figure 6. Decantation test after sonication at 20, 40 and 60 °C 3 min after sonication. 

 

Furthermore the shape of the macro bundles formed in the three decanted suspensions is clearly 

different (Figure 6). The bundles formed at the higher temperature appear more loosely bundled and 

more filamentous compared to the tightly packed bundles seen in the original solutions. A video 

showing snapshots of a 6 h decanting test is also provided in the supplementary information. 

Based on the observed trend that lower temperatures improved dispersibility of CNT in IPA, further 

tests were performed at a lower initial sonication temperature of −17 °C and under the same conditions 

as previously described. The temperature of the bath sonicator could not be maintained at −17 °C for a 

long period of time as the suspension warmed up due to the heat generated by the sonication process. 

The temperature was recorded and found to rapidly increase within the 5 first minutes of sonication up 

to 25 °C. This is likely to have diminished the efficiency of the low temperature sonication. The 

sonication time was consequently reduced from 30 min to 5 min for each process cycle of 24 h and the 

suspension chilled to −17 °C prior to sonication. Pertinent DLS results from the first three cycles are 

shown in Figure 7. The bundle size distribution seemed to broaden and shift to larger particle sizes 

CCBBAA

Sonication parameters

Same concentration 2.6mg/L

Same Power 150W

Same time of sonication 30min

A sonicated at 60ºC

B sonicated at 40ºC

C Sonicated at 20ºC
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with increasing sonication time. Photographs of the suspensions after freezing are shown in Figure 8 

and markedly illustrate this trend. The CNT bundles clearly appeared smaller after a few cycles. The 

same observation was made for highly concentrated suspensions (~100 mg/L). 

Figure 7. Zetasizer CNT bundle size distribution; a cycle corresponds to the freezing of the 

solution followed by sonication at 150 W for 5 min; the same sample undertook three 

cycles; in between sonication steps (every 24 h) the samples were maintained at −17 °C. 

 

Figure 8. Improvement of the CNT dispersion after three freezing cycles at −17 °C. (A) and 

(B) represent a 2.6 mg/L suspension before and after the three bath cryo-sonication  

cycles, respectively. 

 

4. Discussion 

The origin of an improved homogeneity of CNT/IPA dispersions sonicated at a reduced temperature 

was attributed to the change of the CNT/CNT and CNT/solvent interactions. Similar behavior was 

reported in [43,44] where temperature responsive polymers were used to disperse SWNTs and 

MWNTs. The improvement of the dispersion at lower temperatures was then related to the polymer 

Lower Critical Solution Temperature of the polymer (LCST). Below this temperature the polymer 

becomes miscible in the solvent which potentially maximizes polymer/CNT interactions. However, in 

the case of the present study the improvements were attributed to the change in the CNT/CNT 

interactions. Several combined and concurrent actions may explain this phenomenon and these are 

developed in the following section. The first theory relies on the change in the CNT/CNT interactions 

as a function of temperature. The second theory is based on the temperature dependence of Brownian 

motion of CNTs in solution and their impact on entanglement. The last one relates to the solvent 
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properties and to the changes in physico-chemical properties in regard to its interactions with the 

CNTs. The main interactions, which are considered to rule the adhesion of dry CNTs, are van der 

Waals forces between close CNT walls [21–23,46]. Van der Waals forces typically include interactions 

between atoms, molecules and close surfaces [22]. These interactions are typically derived from the 

Lennard Jones Potential (LJP) which is used to approximate the isotropic part of the van der Waals 

forces [47,48], corresponding in the list interaction types to both, attractive and repulsive terms, as a 

function of the distance between the objects. As CNTs are commonly considered to be non-polar [49,50] 

and slightly negatively charged [51,52] due to the curvature of their graphene walls, an approximate 

description of CNT/CNT interactions by means of London and Keesom’s forces combined is 

considered to be a simple and accurate approach [46,53–55]. Recent work on the polymerization of 

low molecular weight alkenes showed the development of a temperature dependence parameter in the 

LJP [47] in order to explain the deviation of some thermo-physical and thermo-chemical properties 

when compared with predicted values. The modified model showed better agreement with 

experimental values. It is possible that CNT bundling kinetics and the interactions between the CNTs 

in solution are also temperature related since CNTs have a graphene-based structure. 

Furthermore, molecular movements of CNTs at low concentrations in solution have been shown to 

be related to Brownian motion [38,56–58], corresponding to the apparent random-walk movement of 

particles in a fluid. The diffusion coefficient of particles, D, as defined by Equation (1), is directly 

proportional to temperature.  

b

Tk
D B=  (1) 

where kB is the Boltzmann constant, T the absolute temperature in K and b the linear drag coefficient 

on the particle from Stokes/low Reynolds regime. 

Equation (1) predicts that a decrease in temperature will reduce diffusion and tend to stabilize the 

CNT in suspension. This is expected to slow the process of entanglement. The combined increase in 

the incidence of contact and movement between the CNTs at higher temperatures may explain faster 

bundling kinetics and agglomeration at greater temperatures. 

Finally, a temperature drop will also affect the solvent properties. Viscosity decreases as a function 

of temperature which will help prevent re-agglomeration, as observed in the case of the viscous media 

used to disperse the CNT. A decrease of temperature from 20 °C to −17 °C will increase the propan-2-ol 

viscosity 7.5 times (Figure 9). The propan-2-ol molecules located between the CNTs need to be 

displaced for agglomeration to occur. In addition, higher solvent viscosity at lower temperature might 

also support the stability of the suspension by enhancing the shear forces between individual CNTs and 

bundles and slow down aggregation. The dielectric constant and the solubility parameter of the solvent 

are also changed, which is likely to affect CNT/solvent and CNT/CNT interactions. 

Furthermore, the presence of air bubbles between the CNTs has been shown to occur [59], which 

can be addressed by degassing the solvent in order to assist the initial dispersion step. It is possible that 

remaining air bubbles, and air still dissolved in the solvent support the formation of bundles. Air 

bubbles have been shown to stick to hydrophobic surfaces and mitigate some form of bridging [60–63].  

E-SEM pictures (Figure 10) show the formation of arches between water bubbles and the CNT BP 

surface on large scales (20 to 50 μm). This confirms that air was present and possibly trapped between 
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the CNT and the water. Furthermore, the diameters of CNTs trapped in water nano-bubbles and visible 

by transparency were measured in an E-SEM saturated with water vapour. An increase of 12% to 16% 

of the diameter was found, which corresponds to a 3.5 nm thick air sheath associated with the CNT 

surface. This value correlated well with reported values of thin air layers on hydrophobic surfaces of 

between 5 to 15 nm [64]. The origin of long range hydrophobic forces is due to the bridging of  

nano-bubbles attached to the hydrophobic surfaces and leads to a strong network which solvent 

molecules cannot penetrate [62]. While the affinity of the hydrophobic surface to air is a typical feature 

of non-wetting surfaces, it has clearly been overlooked in previous studies investigating CNT 

suspension and should be offered greater consideration. The presence of air strongly adsorbed on the 

CNT surface is critical to understand their dispersion properties in liquids as it directly relates to their 

ability to interact with each other. A lower temperature would increase the solubility of air in water, 

which leads to a lower vapour pressure which in turn reduces the size of the vapour-air bubbles in the 

vicinity of the hydrophobic moieties. The dispersion of the macro-bundles would consequently be 

facilitated in the case of highly hydrophobic CNTs by progressive coalescence of the air bubbles 

surrounding the CNTs and infiltration of the solvent. Soft functionalisation of the CNT surface is 

therefore expected to improve the homogeneity in dispersion while a significant damage to 

crystallinity is avoided [65]. 

Figure 9. Propan-2-ol viscosity as a function of temperature, data from Handbook of 

Chemistry and Physics 63rd Edition CRC press. 
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Figure 10. E-SEMs showing presence of water bubbles at 1 kPa of water vapour 

atmosphere; the scale bars on (A), (B), (C) and (D) correspond respectively to 50, 10, 5 

and 1 μm. 

 

 

5. Conclusions 

CNTs have a strong affinity to agglomerate when dispersed in solvents. It has been demonstrated in 

this paper that temperature is a parameter that significantly affects CNT aggregation. The affinity to 

agglomerate is associated with the CNTs acting to minimize their surface energy by minimizing 

interfacial contact to the solvent which leads to CNT forming bundles and agglomerating. The 

quantitative characterization of CNT suspensions for their degree of agglomeration is impaired by the 

large aspect ratio of CNTs that deviates enormously from the spherical particle shape assumed by both, 

optical and dynamic light scattering measurement techniques. The difficulty to characterize 

qualitatively and quantitatively CNT suspensions was highlighted within the discussion. It appears that 

both UV-Visible and DLS offer opportunities to characterize CNT bundle distribution and to observe 

dynamic bundling phenomenon. 

Furthermore, we demonstrated that improved dispersion of CNTs in isopropanol can be achieved 

simply by sonicating at lower temperatures (−17 °C). This improvement may be attributed to a number 

of factors. Firstly, the Van der Waals energy between CNTs is reduced at lower temperatures. This was 

proposed to explain part of the natural adhesion properties of the CNTs. Secondly, entanglement is a 

dynamic process and linked to the movement of individual CNT due to Brownian motion in solution. 

This effect might contribute to the bundling kinetics. Since Brownian motion is temperature 

dependent, a decrease in temperature can explain a change in solubility, thus reducing the frequency of 

collisions and contacts between CNTs. This could explain the reduced entanglement and better 

suspension stability observed at lower temperatures. Thirdly, since the viscosity of the propan-2-ol, the 
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main solvent used in this study, sharply increases when the solvent is cooled from room temperature to 

−17 °C it is possible that the higher viscosity was responsible for slowing a re-agglomeration of CNTs. 

Finally, it was also suggested that the role of air bubbles formed naturally within CNT bundles in  

non-degassed solvents can promote agglomeration during sonication by means of bridging.  
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